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Syntax-Guided Synthesis (SyGusS) is the computational problem of finding an implementation f that
meets both a semantic constraint given by a logical formula ¢ in a background theory 7', and a
syntactic constraint given by a grammar G, which specifies the allowed set of candidate implementa-
tions. Such a synthesis problem can be formally defined in SyGuS-IF, a language that is built on top
of SMT-LIB.

The Syntax-Guided Synthesis Competition (SyGuS-Comp) is an effort to facilitate, bring together
and accelerate research and development of efficient solvers for SyGuS by providing a platform
for evaluating different synthesis techniques on a comprehensive set of benchmarks. In this year’s
competition six new solvers competed on over 1500 benchmarks. This paper presents and analyses
the results of SyGuS-Comp’17.

1 Introduction

The Syntax-Guided Synthesis Competition (SyGuS-Comp) is an annual competition aimed to provide an
objective platform for comparing different approaches for solving the Syntax-Guided Synthesis (SyGuS)
problem. A SyGuS problem takes as input a logical specification ¢ for what a synthesized function f
should compute, and a grammar G providing syntactic restrictions on the function f to be synthesized.
Formally, a solution to a SyGusS instance (¢, G, f) is a function f;,, that is expressible in the grammar
G such that the formula @[f/ fimp] obtained by replacing f by fi, in the logical specification ¢ is valid.
SyGuS instances are formulated in SyGuS-IF [12], a format built on top of SMT-LIB2 [J5].

We report here on the 4th SyGuS competition that took place in July 2017, in Heidelberg, Germany
as a satellite event of CAV’17 (The 29th International Conference on Computer Aided Verification) and
SYNT’17 (The Sixth Workshop on Synthesis). As in the previous competition there were four tracks:
the general track, the conditional linear integer arithmetic track, the invariant synthesis track, and the
programming by examples track. We assume most readers of this report are already familiar with the
SyGusS problem and the tracks of SyGuS-Comp and thus refer the unfamiliar reader to the report on last
year’s competition [3]].

The report is organized as follows. Section [2{describes the participating benchmarks. Section [3|lists
the participating solvers, and briefly describes the main idea behind their strategy. Section 4] provides
details on the experimental setup. Section[5|gives an overview of the results per track. Section[6|provides
details on the results, given from a single benchmark respective. Section [7|concludes.

2 Participating Benchmarks

In addition to last year’s benchmarks, we received 4 new sets of benchmarks this year, which are shown
in Table[Il
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Program Repair The 18 program repair benchmarks correspond to the task of generating small ex-
pression repairs that are consistent with a given set of input-output examples [8]. These benchmarks
were extracted from real-world Java bugs by manually analyzing the developer commits that involved
changes to fewer than 5 lines of code. The key idea of the program repair approach is to the first localize
the fault location in a buggy program and generate the corresponding input-output example behavior
for the buggy expression from passing test cases. In the second phase, the task of repairing the buggy
expression can be framed as a SyGuS problem, where the goal is to synthesize an expression that comes
from a family of expressions defined using a context-free grammar of expressions and that satisfies the
input-output example constraints.

Crypto Circuits The Crypto Circuits benchmarks comprise of tasks of synthesizing constant-time
circuits that are cryptographically resilient to timing attacks [6l]. Consider a circuit C with a set of private
inputs Iy and a set of public inputs I; such that if an attacker changes the values of the public inputs and
observes the corresponding output, she is unable to infer the values of the private inputs (under standard
assumptions about computational resources in cryptography). An attacker can gain information about
private inputs by analyzing the time the circuit takes to compute the output values on public inputs,
e.g. when a public input bit changes from 1 to 0, a specific output bit is guaranteed to change from
1 to 0 independent of whether a particular private input bit is O or 1, but may change faster when this
private input is 0, thus leaking information. The timing attack can be prevented if the circuit satisfies the
constant-time property: A constant-time circuit is the one in which the length of all input-to-output paths
measured in terms of number of gates are the same.

The problem of synthesizing a new circuit C’ that is functionally equivalent to a given circuit C such
that C’ is a constant-time circuit can be formalized as a SyGuS problem. A context-free grammar can
be used to define the set of all constant-time circuits with all input-to-output path lengths within a given
bound, and the functional equivalence constraint can be expressed as a Boolean formula [6].

Instruction Selection The Instruction Selection benchmarks consist of tasks for synthesizing a “Bit
Test and Reset” instruction from the set of basic bitvector operations, in a way similar to the implemen-
tations supported by the x86 processors. These benchmarks comprise of 4 different addressing variants
with increasing levels of complexity:

e btr*: Read from register.
e btr-am-base*: Load from memory address base.
e btr-am-base-index*: Load from memory address base with indexing.

e btr-am-base-index-scale-disp*: Load from memory address base with index shifted with scale.

Invariant Generation The invariant generation benchmarks comprise of the task of generating a loop
invariant (as a conditional linear arithmetic expression) given the pre-condition, post-condition and the
transition function corresponding to the loop body. The 7 new benchmarks [[10] correspond to loop in-
variant tasks adapted from several recent invariant inference papers including generating path invariants,
abductive inference, and NECLA Static analysis benchmarks.
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Benchmark Set  # of benchmarks Contributors

Invariant Generation 7 Saswat Padhi (UCLA)
Program Repair 18 Xuan Bach D Le (SMU), David Lo (SMU) and Claire Le Goues (CMU)
Crypto Circuits 214 Chao Wang (USC)

Instruction Selection 28 Sebastian Buchwald (KIT) and Andreas Fried (KIT)

Table 1: New Contributed Benchmarks

3 Participating Solvers

Six solvers were submitted to this year’s competition. EUSOLVERjg;7, an improved version of EU-
SOLVER; CV (4,97, an improved version of CVC4; EUPHONY, a solver built on top of EUSOLVER;
DRYADSYNTH, a solver specialized for conditional linear integer arithmetic; LOOPINVGEN, a solver
specialized for invariant generation problems; and E3SOLVER, a solver specialized for the bitvector cate-
gory of the PBE track, built on top of the enumerative solver. Table [2]lists the submitted solvers together
with their authors, and Table 3] summarizes which solver participated in which track.

The EUSOLVERj(;7 is based on the divide and conquer strategy [2]. The idea is to find different
expressions that work correctly for different subsets of the input space, and unify them into a solution
that works well for the entire space of inputs. The sub-expressions are typically found using enumeration
techniques and are then unified into the overall expression using machine learning methods for decision
trees [4]].

The CVC4,0;7 solver is based on an approach for program synthesis that is implemented inside an
SMT solver [[13]]. This approach extracts solution functions from unsatisfiability proofs of the negated
form of synthesis conjectures, and uses counterexample-guided techniques for quantifier instantiation
(CEGQI) that make finding such proofs practically feasible. CVC4,¢;7 also combines enumerative tech-
niques, and symmetry breaking techniques [14].

The EUPHONY solver leverages statistical program models to accelerate the EUSOLVER. The under-
lying statistical model is called probabilistic higher-order grammar (PHOG), a generalization of prob-
abilistic context-free grammars (PCFGs). The idea is to use existing benchmarks and the synthesized
results to learn a weighted grammar, and give priority to candidates which are more likely according to
the learned weighted grammar.

The DRYADS YNTH solver combines enumerative and symbolic techniques. It considers benchmarks
in conditional linear integer arithmetic theory (LIA), and can therefore assume all have a solution in
some pre-defined decision tree normal form. It then tries to first get the correct height of a normal form
decision tree, and then tries to synthesize a solution of that height. It makes use of parallelization, using

Solver H Authors

EUSOLVERyg17 || Arjun Radhakrishna (Microsoft) and Abhishek Udupa (Microsoft)
CVC45017 || Andrew Reynolds (Univ. Of Iowa), Cesare Tinelli (Univ. of Iowa), and Clark Barrett (Stanford)
EUuPHONY || Woosuk Lee (Penn), Arjun Radhakrishna (Microsft) and Abhishek Udupa (Microsoft)
DRYADSYNTH || Kangjing Huang (Purdue Univ.), Xiaokang Qiu (Purdue Univ.), and Yanjun Wang (Purdue Univ.)
LOOPINVGEN || Saswat Padhi (UCLA) and Todd Millstein (UCLA)
E3SOLVER || Ammar Ben Khadra (University of Kaiserslautern)

Table 2: Submitted Solvers
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Table 3: Solvers participating in each track

as many cores as are available, and of optimizations based on solutions of typical LIA SyGuS problems.

The LOOPINVGEN solver [10] for invariant synthesis extends the data-driven approach to inferring
sufficient loop invariants from a collection of program states [[11]. Previous approaches to invariant
synthesis were restricted to using a fixed set, or a fixed template for features, e.g., ICE-DT [9, 7] requires
the shape of constraints (such as octagonal) to be fixed apriori. Instead LOOPINVGEN starts with no
initial features, and automatically grows the feature set as necessary using program synthesis techniques.
It reduces the problem of loop invariant inference to a series of precondition inference problems and uses
a Counterexample-Guided Inductive Synthesis (CEGIS) loop to revise the current candidate.

The E3SOLVER solver for PBE bitvector programs, is built on top of the enumerative solver [1} [16].
It improves on the original ENUMERATIVE solver by applying unification techniques [2] and avoiding
calling an SMT solver, since on PBE tracks there are no semantic constraints other than the input-to-
output examples which can be checked without invoking an SMT solver.

4 Experimental Setup

The solvers were run on the StarExec platform [[15]] with a dedicated cluster of 12 nodes, where each node
consisted of two 4-core 2.4GHz Intel processors with 256GB RAM and a 1TB hard drive. The memory
usage limit of each solver run was set to 128 GB. The wallclock time limit was set to 3600 seconds (thus, a
solver that used all cores could consume at most 14400 seconds cpu time). The solutions that the solvers
produce are being checked for both syntactic and semantic correctness. That is, a first post-processor
checks that the produced expression adheres to the grammar specified in the given benchmark, and if this
check passes, a second post-processor checks that the solution adheres to semantic constraints given in
the benchmark (by invoking an SMT solver).

5 Results Overview

The combined results for all tracks are given in Figure [I] The figure shows the sum of benchmarks
solved by the solvers for each track. We can observe that the EUSOLVERj(;7 solved the highest number
of benchmarks in the combined tracks, and the EUPHONY solver and the CV C4,(;7 solver solved almost
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Figure 1: The overall combined results for each solver on benchmarks from all five tracks.

as many.

The primary criterion for winning a track was the number of benchmarks solved, but we also an-
alyzed the time to solve and the the size of the generated expressions. Both where classified using a
pseudo-logarithmic scale as follows. For time to solve the scale is [0,1), [1,3), [3,10), [10,30),[30, 100),
[100,300), [300, 1000), [1000,3600), >3600. That is the first “bucket” refers to termination in less than
one second, the second to termination in one to three second and so on. We say that a solver solved a cer-
tain benchmark among the fastest if the time it took to solve that benchmark was on the same bucket as
that of the solver who solved that benchmark the fastest. For the expression sizes the pseudo-logarithmic
scale we use is [1,10), [10,30), [30,100), [100,300), [300,1000), >1000 where expression size is the
number of nodes in the SyGuS parse-tree. In some tracks there was a tie or almost a tie in terms of the
number of solved benchmarks, but the differences in the time to solve where significant. We also report
on the number of benchmarks solved uniguely by a solver (meaning the number of benchmark that solver
was the single solver that managed to solve them).

Figure 2] shows the percentage of benchmarks solved by each of the solvers in each of the tracks (in
the upper part) and the number of benchmarks solved among the fastest by each of the solvers in each of
the tracks (in the lower part) and the number of benchmarks solved among the fastest.

General Track In the general track the EUSOLVER»(;7 solved more benchmarks than all others (407),
the CVC4y917 came second, solving 378 benchmarks, and EUPHONY came third, solving 362 bench-
marks. The same order appears in the number of benchmarks solved among the fastest: EUSOLVER»g;7
with 276, CVC4,p;7 with 236, and EUPHONY with 135. In terms of benchmarks solved uniquely by a
solver, we have that EUSOLVER(7 solved 34 uniquely, CVC4,9;7 solved 9 uniquely, and EUPHONY
solved 2 uniquely.

We partition the benchmarks of the general track according to categories where different categories
consists of related benchmarks. The results per category are given in the Table @l We can see that
EUSOLVERj;7 preformed better than others in the categories of program repair, icfp and cryptographic
circuits. The CV C4,q17 solver preformed better than others in the categories of let and motion planning,
invariant generation with bounded and unbounded integers, arrays, integers and hacker’s delight. The
EUPHONY solver preformed better than others in the categories of multiple functions, compiler opti-
mizations and bitvectors. We can also observe that none of the solvers could solve any of the instruction
selection benchmarks.
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Figure 2: Percentage of benchmarks solved by the different solvers across all tracks, and the percentage
of benchmarks a solver solved among the fastest for that benchmarks (according to the logarithmic scale)
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Figure 3: Percentage of benchmarks solved by the different solvers across all categories of the general
track, and the percentage of benchmarks a solver solved among the fastest for that benchmark (according
to the logarithmic scale).
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Table 4: Solvers performance across all categories of the general track

Conditional Linear Arithmetic Track In the CLIA track the CVC4,9;7 solved all 73 benchmarks,
EUPHONY and EUSOLVER»(;7 solved 71 benchmarks, and DRYADSYNTH solved 32 benchmarks. The
CV (45017 solver solved 72 benchmarks among the fastest, followed by EUSOLVER;g17 which solved
29 among the fastest, EUPHONY which solved 11 among the fastetst, and DRYADSYNTH which solved
3 among the fastest. None of the benchmarks where solved uniquely.

Invariant Generation Track In the invariant generation track, both the LOOPINVGEN solver and the
CV 45917 solver solved 65 out of 74 benchmarks, the DRYADSYNTH solver solved 64 benchmarks, the
Euphony solver solved 48 benchmarks and EUSolver solved 40 benchmarks. In terms of the time to
solve the differences where more significant. The LOOPINVGEN solver solved 54 benchmarks among
the fastest, followed by CV C4,417 which solved 38 among the fastest, and DRYADSYNTH which solved
36 among the fastest. There was one benchmark that only one solver solved, this is the hola07.sl
benchmark, and the solver is LOOPINVGEN.

Programming By Example BV Track In the PBE track using BV theory, the E3SOLVER solver solved
all 750 benchmarks, EUPHONY solved 747 benchmarks, EUSOLVER,(;7 solved 242, benchmarks, and
CV 4,017 solved 687 benchmarks. The E3SOLVER solver solved 692 among the fastest, EUSOLVERq;7
solved 211 among the fastest, CVC4,;7 solved 169 among the fastest, and EUPHONY solved 117 among
the fastest. Three benchmarks where solved uniquely by E3SOLVER, these are: 13_1000.s1, 40_-
1000.s1 and 89_1000.s1.
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Programming By Example Strings Track In the PBE track using SLIA theory, the CVC4,¢;7 solved
89 out of 108 benchmarks, EUPHONY solved 78, and EUSOLVERj(7 solved 69. The EUPHONY solver
solved 66 benchmarks among the fastest, CVC4,9;7 solved 49 among the fastest and EUSOLVERyg7
solved 23 among the fastest. Nine benchmarks where solved by only one solver, which is CVC45q17.

6 Detailed Results

In the following section we show the results of the competition from the benchmark’s perspective. For a
given benchmark we would like to know: how many solvers solved it, what is the min and max time to
solve, what are the min and max size of the expressions produced, which solver solved the benchmark
the fastest, and which solver produced the smallest expression.

We represents the results per benchmark in groups organized per tracks and categories. For instance,
Fig. |8] at the top presents details of the program repair benchmarks. The black bars show the range of
the time to solve among the different solvers in pseudo logarithmic scale (as indicated on the upper part
of the y-axis). Inspect for instance benchmark t_2.s1. The black bar indicates that the fastest solver to
solve it used less than 1 second, and the slowest used between 100 to 300 seconds. The black number
above the black bar indicates the exact number of seconds (floor-rounded to the nearest second) it took
the slowest solver to solve a benchmark (and o if at least one solver exceeded the time bound). Thus, we
can see that the slowest solver to solve t_2.s1 took 141 seconds to solve it. The white number at the
lower part of the bar indicates the time of the fastest solver to solve that benchmark. Thus, we can see that
the fastest solver to solve t_2.s1 required less than 1 second to do so. The colored squares/rectangles
next to the lower part of the black bar, indicate which solvers were the fastest to solve that benchmark
(according to the solvers’ legend at the top). Here, fastest means in the same logarithmic scale as the
absolute fastest solver. For instance, we can see that EUPHONY and EUSOLVER»(;7 were the fastest to
solve t_2.s1, solving it in less than a second and that among the 2 solvers that solved t_3.s1 only
EUSOLVER»(7 solved it in less than 1 seconds.

Similarly, the gray bars indicate the range of expression sizes in pseudo logarithmic scales (as indi-
cated on the lower part of the y-axis), where the size of an expression is determined by the number of
nodes in its parse tree. The black number at the bottom of the gray bar indicates the exact size expression
of the largest solution (or o if it exceeded 1000), and the white number at the top of the gray bar indicates
the exact size expression of the smallest solution (when the smallest and largest size of expressions are
in the same logarithmic bucket (as is the case in t_2.s1), we provide only the largest expression size,
thus there is no white number on the gray bar). The colored squares/rectangles next to the upper part of
the gray bar indicates which solvers (according to the legend) produced the smallest expression (where
smallest means in the same logarithmic scale as the absolute smallest expression). For instance, for t_-
20.s1 the smallest expression produced had size 3, and 2 solvers out of the 3 who solved it managed to
produce an expression of size less than 10.

Finally, at the top of the figure above each benchmark there is a number indicating the number of
solvers that solved that benchmark. For instance, one solver solved t_14.s1, two solvers solved t_-
12.s1, three solvers solved t_2.s1, and no solver solved t_6.sl. Note that the reason t_6.s1 has
2 as the upper time bound, is that that is the time to terminate rather than the time to solve. Thus, all
solvers aborted within less than 2 seconds, but either they did not produce a result, or they produced an
incorrect result. When no solver produced a correct result, there are no colored squares/rectangles next
to the lower parts of the bars, as is the case for t_6.s1.
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7 Summary

This year’s competition consisted of over 1500 benchmarks, 250 of which where contributed this year.
Six solvers competed this year, out of which four by developers submitting a tool for SyGuS-Comp for
the first time. All tools preformed remarkably, on both existing and new benchmarks. In particular, 65%
of the new benchmarks were solved.

An impressive progress was shown this year in solving the strings benchmarks of the programing by
example track. Analyzing the features of benchmarks that are still hard to solve, we see that these include
those with either (i) multiple functions to synthesize or (ii) where the specification invokes the functions
with different parameters or (iii) those that use the let expression for specifying auxiliary variables, or
(iv) the grammar is very general consisting of much more operators than needed, or (v) the specification
is partial in the sense that the domain of semantic solutions is not a singleton.
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