SyGuS-Comp 2017: Results and Analysis

Rajeev Alur Dana Fisman Rishabh Singh

University of Pennsylvania Ben-Gurion University Microsoft Research, Redmond

Armando Solar-Lezama

Massachusetts Institute of Technology

Syntax-Guided Synthesis (SyGusS) is the computational problem of finding an implementation f that
meets both a semantic constraint given by a logical formula ¢ in a background theory 7', and a
syntactic constraint given by a grammar G, which specifies the allowed set of candidate implementa-
tions. Such a synthesis problem can be formally defined in SyGuS-IF, a language that is built on top
of SMT-LIB.

The Syntax-Guided Synthesis Competition (SyGuS-Comp) is an effort to facilitate, bring together
and accelerate research and development of efficient solvers for SyGuS by providing a platform
for evaluating different synthesis techniques on a comprehensive set of benchmarks. In this year’s
competition six new solvers competed on over 1500 benchmarks. This paper presents and analyses
the results of SyGuS-Comp’17.

1 Introduction

The Syntax-Guided Synthesis Competition (SyGuS-Comp) is an annual competition aimed to provide an
objective platform for comparing different approaches for solving the Syntax-Guided Synthesis (SyGuS)
problem. A SyGuS problem takes as input a logical specification ¢ for what a synthesized function f
should compute, and a grammar G providing syntactic restrictions on the function f to be synthesized.
Formally, a solution to a SyGusS instance (¢, G, f) is a function f;,, that is expressible in the grammar
G such that the formula @[f/ fimp] obtained by replacing f by fi, in the logical specification ¢ is valid.
SyGuS instances are formulated in SyGuS-IF [12], a format built on top of SMT-LIB2 [J5].

We report here on the 4th SyGuS competition that took place in July 2017, in Heidelberg, Germany
as a satellite event of CAV’17 (The 29th International Conference on Computer Aided Verification) and
SYNT’17 (The Sixth Workshop on Synthesis). As in the previous competition there were four tracks:
the general track, the conditional linear integer arithmetic track, the invariant synthesis track, and the
programming by examples track. We assume most readers of this report are already familiar with the
SyGusS problem and the tracks of SyGuS-Comp and thus refer the unfamiliar reader to the report on last
year’s competition [3]].

The report is organized as follows. Section [2{describes the participating benchmarks. Section [3|lists
the participating solvers, and briefly describes the main idea behind their strategy. Section 4] provides
details on the experimental setup. Section[5|gives an overview of the results per track. Section[6|provides
details on the results, given from a single benchmark respective. Section [7|concludes.

2 Participating Benchmarks

In addition to last year’s benchmarks, we received 4 new sets of benchmarks this year, which are shown
in Table[Il

© R. Alur, D. Fisman, R. Singh & A. Solar-Lezama
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
SYNT 2017

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 SyGuS-Comp 2016: Results and Analysis

Program Repair The 18 program repair benchmarks correspond to the task of generating small ex-
pression repairs that are consistent with a given set of input-output examples [8]. These benchmarks
were extracted from real-world Java bugs by manually analyzing the developer commits that involved
changes to fewer than 5 lines of code. The key idea of the program repair approach is to the first localize
the fault location in a buggy program and generate the corresponding input-output example behavior
for the buggy expression from passing test cases. In the second phase, the task of repairing the buggy
expression can be framed as a SyGuS problem, where the goal is to synthesize an expression that comes
from a family of expressions defined using a context-free grammar of expressions and that satisfies the
input-output example constraints.

Crypto Circuits The Crypto Circuits benchmarks comprise of tasks of synthesizing constant-time
circuits that are cryptographically resilient to timing attacks [6l]. Consider a circuit C with a set of private
inputs Iy and a set of public inputs I; such that if an attacker changes the values of the public inputs and
observes the corresponding output, she is unable to infer the values of the private inputs (under standard
assumptions about computational resources in cryptography). An attacker can gain information about
private inputs by analyzing the time the circuit takes to compute the output values on public inputs,
e.g. when a public input bit changes from 1 to 0, a specific output bit is guaranteed to change from
1 to 0 independent of whether a particular private input bit is O or 1, but may change faster when this
private input is 0, thus leaking information. The timing attack can be prevented if the circuit satisfies the
constant-time property: A constant-time circuit is the one in which the length of all input-to-output paths
measured in terms of number of gates are the same.

The problem of synthesizing a new circuit C’ that is functionally equivalent to a given circuit C such
that C’ is a constant-time circuit can be formalized as a SyGuS problem. A context-free grammar can
be used to define the set of all constant-time circuits with all input-to-output path lengths within a given
bound, and the functional equivalence constraint can be expressed as a Boolean formula [6].

Instruction Selection The Instruction Selection benchmarks consist of tasks for synthesizing a “Bit
Test and Reset” instruction from the set of basic bitvector operations, in a way similar to the implemen-
tations supported by the x86 processors. These benchmarks comprise of 4 different addressing variants
with increasing levels of complexity:

e btr*: Read from register.
e btr-am-base*: Load from memory address base.
e btr-am-base-index*: Load from memory address base with indexing.

e btr-am-base-index-scale-disp*: Load from memory address base with index shifted with scale.

Invariant Generation The invariant generation benchmarks comprise of the task of generating a loop
invariant (as a conditional linear arithmetic expression) given the pre-condition, post-condition and the
transition function corresponding to the loop body. The 7 new benchmarks [[10] correspond to loop in-
variant tasks adapted from several recent invariant inference papers including generating path invariants,
abductive inference, and NECLA Static analysis benchmarks.

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 3

Benchmark Set # of benchmarks Contributors

Invariant Generation 7 Saswat Padhi (UCLA)
Program Repair 18 Xuan Bach D Le (SMU), David Lo (SMU) and Claire Le Goues (CMU)
Crypto Circuits 214 Chao Wang (USC)

Instruction Selection 28 Sebastian Buchwald (KIT) and Andreas Fried (KIT)

Table 1: New Contributed Benchmarks

3 Participating Solvers

Six solvers were submitted to this year’s competition. EUSOLVERjg;7, an improved version of EU-
SOLVER; CV (4,97, an improved version of CVC4; EUPHONY, a solver built on top of EUSOLVER;
DRYADSYNTH, a solver specialized for conditional linear integer arithmetic; LOOPINVGEN, a solver
specialized for invariant generation problems; and E3SOLVER, a solver specialized for the bitvector cate-
gory of the PBE track, built on top of the enumerative solver. Table [2]lists the submitted solvers together
with their authors, and Table 3] summarizes which solver participated in which track.

The EUSOLVERj(;7 is based on the divide and conquer strategy [2]. The idea is to find different
expressions that work correctly for different subsets of the input space, and unify them into a solution
that works well for the entire space of inputs. The sub-expressions are typically found using enumeration
techniques and are then unified into the overall expression using machine learning methods for decision
trees [4]].

The CVC4,0;7 solver is based on an approach for program synthesis that is implemented inside an
SMT solver [[13]]. This approach extracts solution functions from unsatisfiability proofs of the negated
form of synthesis conjectures, and uses counterexample-guided techniques for quantifier instantiation
(CEGQI) that make finding such proofs practically feasible. CVC4,¢;7 also combines enumerative tech-
niques, and symmetry breaking techniques [14].

The EUPHONY solver leverages statistical program models to accelerate the EUSOLVER. The under-
lying statistical model is called probabilistic higher-order grammar (PHOG), a generalization of prob-
abilistic context-free grammars (PCFGs). The idea is to use existing benchmarks and the synthesized
results to learn a weighted grammar, and give priority to candidates which are more likely according to
the learned weighted grammar.

The DRYADS YNTH solver combines enumerative and symbolic techniques. It considers benchmarks
in conditional linear integer arithmetic theory (LIA), and can therefore assume all have a solution in
some pre-defined decision tree normal form. It then tries to first get the correct height of a normal form
decision tree, and then tries to synthesize a solution of that height. It makes use of parallelization, using

Solver H Authors

EUSOLVERyg17 || Arjun Radhakrishna (Microsoft) and Abhishek Udupa (Microsoft)
CVC45017 || Andrew Reynolds (Univ. Of Iowa), Cesare Tinelli (Univ. of Iowa), and Clark Barrett (Stanford)
EUuPHONY || Woosuk Lee (Penn), Arjun Radhakrishna (Microsft) and Abhishek Udupa (Microsoft)
DRYADSYNTH || Kangjing Huang (Purdue Univ.), Xiaokang Qiu (Purdue Univ.), and Yanjun Wang (Purdue Univ.)
LOOPINVGEN || Saswat Padhi (UCLA) and Todd Millstein (UCLA)
E3SOLVER || Ammar Ben Khadra (University of Kaiserslautern)

Table 2: Submitted Solvers

4 SyGuS-Comp 2016: Results and Analysis

Solvers

~
B > (g A
> s z v 5 N
>3 22% 2
2 O %3 Q
-} > D o O &
Tracks | ©O @M A 2 m
LIA 1 1.1 1 0 O
INV 1 1 1 1 1 O
General 1 1.1 0 0 O
PBEStrings || 1 1 1 0 0 O
PBE BV 1 1 1 0 0 1

Table 3: Solvers participating in each track

as many cores as are available, and of optimizations based on solutions of typical LIA SyGuS problems.

The LOOPINVGEN solver [10] for invariant synthesis extends the data-driven approach to inferring
sufficient loop invariants from a collection of program states [[11]. Previous approaches to invariant
synthesis were restricted to using a fixed set, or a fixed template for features, e.g., ICE-DT [9, 7] requires
the shape of constraints (such as octagonal) to be fixed apriori. Instead LOOPINVGEN starts with no
initial features, and automatically grows the feature set as necessary using program synthesis techniques.
It reduces the problem of loop invariant inference to a series of precondition inference problems and uses
a Counterexample-Guided Inductive Synthesis (CEGIS) loop to revise the current candidate.

The E3SOLVER solver for PBE bitvector programs, is built on top of the enumerative solver [1} [16].
It improves on the original ENUMERATIVE solver by applying unification techniques [2] and avoiding
calling an SMT solver, since on PBE tracks there are no semantic constraints other than the input-to-
output examples which can be checked without invoking an SMT solver.

4 Experimental Setup

The solvers were run on the StarExec platform [[15]] with a dedicated cluster of 12 nodes, where each node
consisted of two 4-core 2.4GHz Intel processors with 256GB RAM and a 1TB hard drive. The memory
usage limit of each solver run was set to 128 GB. The wallclock time limit was set to 3600 seconds (thus, a
solver that used all cores could consume at most 14400 seconds cpu time). The solutions that the solvers
produce are being checked for both syntactic and semantic correctness. That is, a first post-processor
checks that the produced expression adheres to the grammar specified in the given benchmark, and if this
check passes, a second post-processor checks that the solution adheres to semantic constraints given in
the benchmark (by invoking an SMT solver).

5 Results Overview

The combined results for all tracks are given in Figure [I] The figure shows the sum of benchmarks
solved by the solvers for each track. We can observe that the EUSOLVERj(;7 solved the highest number
of benchmarks in the combined tracks, and the EUPHONY solver and the CV C4,(;7 solver solved almost

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 5

Number of Benchmark Solved
per Solver per Track

1400 PBE Strings
1200 i PBE Bitvectors
1000 CLIA
& Invariant
800
& General
600
400
200
0
EuSolver Ccvcsa Euphony DryadSynth LoopinvGen e3solver

Figure 1: The overall combined results for each solver on benchmarks from all five tracks.

as many.

The primary criterion for winning a track was the number of benchmarks solved, but we also an-
alyzed the time to solve and the the size of the generated expressions. Both where classified using a
pseudo-logarithmic scale as follows. For time to solve the scale is [0,1), [1,3), [3,10), [10,30),[30, 100),
[100,300), [300, 1000), [1000,3600), >3600. That is the first “bucket” refers to termination in less than
one second, the second to termination in one to three second and so on. We say that a solver solved a cer-
tain benchmark among the fastest if the time it took to solve that benchmark was on the same bucket as
that of the solver who solved that benchmark the fastest. For the expression sizes the pseudo-logarithmic
scale we use is [1,10), [10,30), [30,100), [100,300), [300,1000), >1000 where expression size is the
number of nodes in the SyGuS parse-tree. In some tracks there was a tie or almost a tie in terms of the
number of solved benchmarks, but the differences in the time to solve where significant. We also report
on the number of benchmarks solved uniguely by a solver (meaning the number of benchmark that solver
was the single solver that managed to solve them).

Figure 2] shows the percentage of benchmarks solved by each of the solvers in each of the tracks (in
the upper part) and the number of benchmarks solved among the fastest by each of the solvers in each of
the tracks (in the lower part) and the number of benchmarks solved among the fastest.

General Track In the general track the EUSOLVER»(;7 solved more benchmarks than all others (407),
the CVC4y917 came second, solving 378 benchmarks, and EUPHONY came third, solving 362 bench-
marks. The same order appears in the number of benchmarks solved among the fastest: EUSOLVER»g;7
with 276, CVC4,p;7 with 236, and EUPHONY with 135. In terms of benchmarks solved uniquely by a
solver, we have that EUSOLVER(7 solved 34 uniquely, CVC4,9;7 solved 9 uniquely, and EUPHONY
solved 2 uniquely.

We partition the benchmarks of the general track according to categories where different categories
consists of related benchmarks. The results per category are given in the Table @l We can see that
EUSOLVERj;7 preformed better than others in the categories of program repair, icfp and cryptographic
circuits. The CV C4,q17 solver preformed better than others in the categories of let and motion planning,
invariant generation with bounded and unbounded integers, arrays, integers and hacker’s delight. The
EUPHONY solver preformed better than others in the categories of multiple functions, compiler opti-
mizations and bitvectors. We can also observe that none of the solvers could solve any of the instruction
selection benchmarks.

6 SyGuS-Comp 2016: Results and Analysis

Percentage of Benchmarks Solved
per Track per Solver

100
90
80
70
60
50
40
30
20
10

i EUSolver_2017
lcvca_2017

& Euphony
H DryadSynth

¥ LooplnvGen

S E3Solver
0
Invariant CLIA PBE Bitvectors PBE Strings General
Percentage of Benchmarks Solved Among the Fastests
per Track per Solver
_I W EUSolver_2017
mcvca_2017
1 & Euphony
H DryadSynth
& LooplnvGen
% E3Solver
Invariant CLIA PBE Bitvectors PBE Strings General

Figure 2: Percentage of benchmarks solved by the different solvers across all tracks, and the percentage
of benchmarks a solver solved among the fastest for that benchmarks (according to the logarithmic scale)

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 7

Percentage of Benchmarks Solved in the General Track
per Solver per Category

| B

K R

|| | |

| | | |

| | | |

[| | = EUSolver_2017
= = HCVCa_2017

. . “ Euphony

Percentage of Benchmarks Solved among the Fastest in the General Track
per Solver per Category

W EUSolver_2017
mCve4_2017

“ Euphony

Figure 3: Percentage of benchmarks solved by the different solvers across all categories of the general
track, and the percentage of benchmarks a solver solved among the fastest for that benchmark (according
to the logarithmic scale).

8 SyGuS-Comp 2016: Results and Analysis

s E 3
$ 3t
2 m D
s o £ £
5 £ & % e
= g [=] = = =]
< <)] o »n 9]]
E ~ "é .g 5 = — 5 .§
£ £ 2 2 ¢ 5 g 3
S 283 & & 2 % ¢
= S o3) [< g
5} ~— ~— 1) »n = -
2 2 5 5 2 2 & ¢ § g
s 2§58 252 RE = g
=] = = =]
S 3 & E 5 < £ E £Y &8 £ Toal
Number of benchmarks 32 30 28 28 32 31 44 34 18 50 214 28 569
EUSOLVERyy7 || 16 10 24 24 18 31 35 33 14 50 152 0 407
Solved CVC4y917 15 15 24 24 12 31 44 34 14 48 117 0 378
EuPHONY (| 19 10 24 24 18 31 44 33 14 50 95 O 362
EUSOLVER»(;7 7 2 12 14 6 5 20 14 13 40 143 0 276
Fastest CVCdyy7 || 11 15 18 19 9 31 44 33 7 19 30 0 236
EuPHONY || 16 2 8 13 13 4 27 14 9 29 0O 0 135
EUSOLVER»(;7 0 0 0 0 0 0 0 0 0 0 34 0 34
Uniquely CVC4yp7 || 15 0 0 1 0 0 1 1 0 0 0 9
EUPHONY 2 0 0 O O O o o o0 o 0O 0 2

Table 4: Solvers performance across all categories of the general track

Conditional Linear Arithmetic Track In the CLIA track the CVC4,9;7 solved all 73 benchmarks,
EUPHONY and EUSOLVER»(;7 solved 71 benchmarks, and DRYADSYNTH solved 32 benchmarks. The
CV (45017 solver solved 72 benchmarks among the fastest, followed by EUSOLVER;g17 which solved
29 among the fastest, EUPHONY which solved 11 among the fastetst, and DRYADSYNTH which solved
3 among the fastest. None of the benchmarks where solved uniquely.

Invariant Generation Track In the invariant generation track, both the LOOPINVGEN solver and the
CV 45917 solver solved 65 out of 74 benchmarks, the DRYADSYNTH solver solved 64 benchmarks, the
Euphony solver solved 48 benchmarks and EUSolver solved 40 benchmarks. In terms of the time to
solve the differences where more significant. The LOOPINVGEN solver solved 54 benchmarks among
the fastest, followed by CV C4,417 which solved 38 among the fastest, and DRYADSYNTH which solved
36 among the fastest. There was one benchmark that only one solver solved, this is the hola07.sl
benchmark, and the solver is LOOPINVGEN.

Programming By Example BV Track In the PBE track using BV theory, the E3SOLVER solver solved
all 750 benchmarks, EUPHONY solved 747 benchmarks, EUSOLVER,(;7 solved 242, benchmarks, and
CV 4,017 solved 687 benchmarks. The E3SOLVER solver solved 692 among the fastest, EUSOLVERq;7
solved 211 among the fastest, CVC4,;7 solved 169 among the fastest, and EUPHONY solved 117 among
the fastest. Three benchmarks where solved uniquely by E3SOLVER, these are: 13_1000.s1, 40_-
1000.s1 and 89_1000.s1.

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 9

Programming By Example Strings Track In the PBE track using SLIA theory, the CVC4,¢;7 solved
89 out of 108 benchmarks, EUPHONY solved 78, and EUSOLVERj(7 solved 69. The EUPHONY solver
solved 66 benchmarks among the fastest, CVC4,9;7 solved 49 among the fastest and EUSOLVERyg7
solved 23 among the fastest. Nine benchmarks where solved by only one solver, which is CVC45q17.

6 Detailed Results

In the following section we show the results of the competition from the benchmark’s perspective. For a
given benchmark we would like to know: how many solvers solved it, what is the min and max time to
solve, what are the min and max size of the expressions produced, which solver solved the benchmark
the fastest, and which solver produced the smallest expression.

We represents the results per benchmark in groups organized per tracks and categories. For instance,
Fig. |8] at the top presents details of the program repair benchmarks. The black bars show the range of
the time to solve among the different solvers in pseudo logarithmic scale (as indicated on the upper part
of the y-axis). Inspect for instance benchmark t_2.s1. The black bar indicates that the fastest solver to
solve it used less than 1 second, and the slowest used between 100 to 300 seconds. The black number
above the black bar indicates the exact number of seconds (floor-rounded to the nearest second) it took
the slowest solver to solve a benchmark (and o if at least one solver exceeded the time bound). Thus, we
can see that the slowest solver to solve t_2.s1 took 141 seconds to solve it. The white number at the
lower part of the bar indicates the time of the fastest solver to solve that benchmark. Thus, we can see that
the fastest solver to solve t_2.s1 required less than 1 second to do so. The colored squares/rectangles
next to the lower part of the black bar, indicate which solvers were the fastest to solve that benchmark
(according to the solvers’ legend at the top). Here, fastest means in the same logarithmic scale as the
absolute fastest solver. For instance, we can see that EUPHONY and EUSOLVER»(;7 were the fastest to
solve t_2.s1, solving it in less than a second and that among the 2 solvers that solved t_3.s1 only
EUSOLVER»(7 solved it in less than 1 seconds.

Similarly, the gray bars indicate the range of expression sizes in pseudo logarithmic scales (as indi-
cated on the lower part of the y-axis), where the size of an expression is determined by the number of
nodes in its parse tree. The black number at the bottom of the gray bar indicates the exact size expression
of the largest solution (or o if it exceeded 1000), and the white number at the top of the gray bar indicates
the exact size expression of the smallest solution (when the smallest and largest size of expressions are
in the same logarithmic bucket (as is the case in t_2.s1), we provide only the largest expression size,
thus there is no white number on the gray bar). The colored squares/rectangles next to the upper part of
the gray bar indicates which solvers (according to the legend) produced the smallest expression (where
smallest means in the same logarithmic scale as the absolute smallest expression). For instance, for t_-
20.s1 the smallest expression produced had size 3, and 2 solvers out of the 3 who solved it managed to
produce an expression of size less than 10.

Finally, at the top of the figure above each benchmark there is a number indicating the number of
solvers that solved that benchmark. For instance, one solver solved t_14.s1, two solvers solved t_-
12.s1, three solvers solved t_2.s1, and no solver solved t_6.sl. Note that the reason t_6.s1 has
2 as the upper time bound, is that that is the time to terminate rather than the time to solve. Thus, all
solvers aborted within less than 2 seconds, but either they did not produce a result, or they produced an
incorrect result. When no solver produced a correct result, there are no colored squares/rectangles next
to the lower parts of the bars, as is the case for t_6.s1.

1S

: Results and Analys

SyGuS-Comp 2016

10

d Bitvector Category

imizations an

Compiler Opt

EUSolver2017

CVvC4-2017

s Euphony

1
=]
S

[300,1000
[

[1000,3600

[

awn-)}dop|em ?zis-adxa

.1000

IS’ ba Bau"wb
Is'v ba Bau"wb
Is'€ ba Bau"wb
Is'Z ba Bau"wb
I1s'T ba Bau"wb
IS’ bau wb

ISy bau~wb
I1s'€” hau"wb

I1s'¢ bau"wb

IS'T bau"wb
Is'gxew”whb

IS pxew” wb
Is*exew” wb
Is'zxew”wb
Is'€”doo wb
|s'Z doo"wb
Is'1doo| wb
|s*abues”u wb
|s°2A @s00yd”wb
IS'T0 @s00yd~ wb
IS'Z"19s ease”wb
Is'plelwoukjod

IS €letwouk|jod
Is'zlelwouAjod
IS’ TjelwouAjod
|s'|elwouAjod
Is*Ayed

15" TP-aNVN-Aed
1" 0pP-aNVN-Aed
1s'Tp-9Iv-Ajuied
15°0P-2lv-Ajued

I1s'0Tsn|d jesauan

benchmarks

Let and Motion Planning Category

EUSolver2017

CVC4-2017

I Euphony

42

28

12

22

© oo 00 00 o0
— —
521
150 @ 185

e

0
626

I 207
3

174
[]

125

e

e
—
462 903
124 178 268
I |
5
0

16

B

>3600
[100,300

13-yd0)dj1eM

i

S

Il

?zis-adxa

15°6539|0M)
|S"8s319|0M}
|S*LSI9|0M3
|S*9S19|0M}
15°GS19j0M)
|S"pS19|0M]
|S*€S19|0M3
15°0TSIoI0M}
|S*TS19|0M)
1s'§P3SIV4Iun0d60)|
15" TP3STV43unod6o)
15'SP3STV4Z3UN0d60|
1S"TP3STV4Z3Un0d60|
|S'Z3unodbo|
|s"3unodboj|
|s"Ad023STv4SoUNeAl
|S'S2UNyaAL
Is'sounjiybra

1S'LSSP 10MdIN
IS"ESSP10MdIN

1S LSyP 10Md I
IS'ESYP 10MdIN
1S'LSTP 1OMdIN
IS"ESTP 10MdI
1S°LSSP TMdI
1S'ESSP IMdIN

1S LSYP IMdIW
IS'ESTP IMdIW
1S'LSTP IMdI

IS'ESTP IMdIN

benchmarks

Categories of the

ing

Plann

10N

, Let and Mot

, Bitvectors

1018

Evaluation of Compiler Optimizat

General Track.

Figure 4

11

h & A. Solar-Lezama

ing

R. Alur, D. Fisman, R. S

th Bounded Integers Category

ion wi

Invariant Generat;

EUSolver2017

CVC4-2017

I Euphony

1“ -_w 1
1“ -_w 1
2“ -_w 1
ln -_W.. 1
ln -_w 1
“ -_w 1
ln -_W.. 1
1“ -_m 1
1“ -_-Q._A 1
1“ -_w il
<
3 |
E & 8
o o
0 ™ na 1
g
6!- -_w 1
oS
] =]
2B E
- ._w]
‘B, e]
7- & 1
3! w 1
ln w]
ln H]
BI 2 il
2 B
s._ 2]
B 2
o |
x_ _x 1
1“ -_w 1
4! -_m_A il
-
=
2 |
G! _x
2 o
< Ll Nz 1
g
PP ———
ScsssosmAa -
82990 mA 4o
RS macm =S p S
AN oo A — —
o oo m — [«
ggsge 858
gsgc S
R
awiy->d0d||em azis-1dxa

IS ZJuIm-uab AUl
IS"TJUIM U6 AUL
|S'ZM Uab AUl
IS'TM Uab AUl
|S"[1ewA”uab AUl
Is"pxa11 uab Aul
|S*Zxa4y uab Aul
|S" X343 uab Aul
IS €wIay uab Aul
IS ZWIay uab Aul
|S'523 uab Aul
|S'ywns uab Aul
|S'€Ewns uab Aul
IS’ TWNS uab Aul
IS'TTO U uab Aul
|S*Z4uly " uab Aul
|S"T4uly " uab AUl
Is'6613uab AUl
Is'8b1y uab Aul
1S'9b1y"Uab AUl
Is*€61yUab AUl

IS 161 uab AUl
IS' X3 uab Aul
IS'€Zxa"uab Aul
IS'pTX2 uab Aul
|S' 1462 uab Aul
|s*z4eB6ad uab Aul

|s*Aesse”uab Aul

benchmarks

th Unbounded Integers Category

ion wi

Invariant Generat;

CVC4-2017 EUSolver2017

B Euphony

111

1
N -] o]
BLEj N S e
19

8
-
.

=
19

1
: an
:
21 19 19 19 21 19

0

w

=
19

1
=

19

. @
el |
2 _x
m
o ™ ule |
a
1_- -_w 1
<
B 3 |2 1
5- -_w i
1“ -_w i
ln -_n 1
Zn -_w 1
1“ -_w i
0_- -_w 1
mI_ -_m 1
mI_ -_H 1
2“ -_w i
Vw— _x 1
~|m -_n 1
3- -_H 1
©
] = |2 1
BI— -_.u... 1
S R R O S S RSN
o —~ = = — — — — — o
833353538 ma o > 3 8
383883 mAagg -~ 88
838 mAagm=S : 8 S
mAaS o .
A s SO O = = >
o o o m — > O
333> 28
S @ =]
S o o
awi-ydod|em azis-a1dxa

|S'ZJUIM U6 AUl ppPqun
IS T3uIM U6 AUl ppqun
|s'ZM Uab AUl ppqun
|s'TM U6 AUl ppqun
|S'IlewA”uab AUl ppqun
|S'yXxa1)” uab~Aul ppqun
|s'Zx@.41"uab AUl ppqun
|S" X243 uab AUl ppqun
|S"€WIa) Uab AUl ppqun
1S zWJIe) uab AUl ppqun
|s'$21”Uab ™ AUl ppqun
|s"ywns uab Aul ppqun
|S"€wns"uab AUl ppqun
|S'TWNs uab Aul ppqun
|S"TT2 U uah Aul ppqun
1S"Zyuy"uab Aul"ppqun
IS'TJuly"uab AuI"ppqun
|s'661"uab AuI"ppqun
|s'gby uab Aul"ppqun
1s°961"uab AUl ppqun
1s'€61"uab AUl ppqun
|s'161 uab AuI“ppqun
|s* L3 uab Aul ppqun
|s'€Zx® uab Aul ppqun
|S'pTX® Udb AUl ppqun
|s'T4627Uab AU ppqun
|s'z1eb3> uab AUl ppqun

|s'Aease”usb Au"ppqun

benchmarks

t Category of the General Track.

f Invarian

10n O

: Evaluati

Figure 5

Results and Analysis

SyGuS-Comp 2016

12

Multiple Functions Category

EUSolver2017

CVC4-2017

I Euphony

[51000.3600) -

£(300,1000) -

[30,100) |-
[10,30) |
[3,10)
[1.3) |

L
=)
S
il
o
S
=

13-)202|1eM

[1,10) |

00,1000)

S
B
=]
S
oG

?zis-adxa”

3

>1000

|S'Ep 22.4u3
1s'Zp 22143
IS TP 23443
|S'0p @3y}
[SEEIH
|s'Zounyuay
[ER SIITER
|S'SOUNYXIS
|S*'SOUNjuaAas
|S'TP 994y} UdA3S
|S'0P 934y} UdASS
|S'$2 UIASS
|S'€2 UDADS
|S'Z0 uanas
[ERENENES
1S'6S

Is'8s

Is'LS

1s'9s

1S'GS

Is'ys

IS'€S

I1s'Zs

IS'CTS
IS'TTS
IS'0TS

IS'TS

1S'ZP 0S
IS'TP 0S
1S'0P"0S
IS'0s

|s'soungauiu

benchmarks

Arrays Category

EUSolver2017

CvC4-2017

W Euphony

'

297

13K 13K 54K 54K 217K 217K

3K

86
3K

18K 871K 870K

4aK

K

a1
-
=
8K

2|

i
631

-
H
101 256

[|
I_N g
B
© 2 |
2
[]
E:
o 4 |
[
i g
Bl :
[| 2
M
< BN
[|]
<
M
~ [| g
M
Scg3ggcma o555 2
3888t ds ~—“ Mg 2809
Mo MadscmI S oo Mg o
ATl TN oo A« — = O O A
ss8ac 22883
8832 2358
S m = — ™
“swi-yoopjem 9zis-adxa

IS'G 6 wns Aeue
IS'ST 6 wns Aewe
IS’ 8 wns Aeue
IS'GT 8 wns Aewe
IS~/ wns Aeue
IS'GT £ wns Aewe
|S'G 9 wns Aeue
IS'ST 9 wns Aewe
IS'ST S wns Aewe
1S'S v wns Aeue
IS'ST ¥ wns Aewe
IS’ € wns Aeue
IS'GT € wns Aewe
IS’ ¢ wns Aeue
IS'ST ¢ wns Aewe

1S'6 0T wns Aewe

benchmarks

IS'ST 0T wns Aewe
1S'6 Yoieas Aeue
|s'8"youeas Aewe
|s'L"yoieas Aeue
1S'9 youieas Aese
|s'G youeas Aewe
IS’y youeas Aeue
|S'€ yoieas Aewe
|s'Z yoseas Aewe
IS'ST YdJeas Aeuse
IS'vT ydJeas Aelse
IS'ET YoJeas Aeuse
|S'ZT YdJeas Aeuse
IS'TT ydJeas Aeue

IS'0T ydJeas Aeuse

f the General Track.

T1€S O

Evaluation of Multiple Functions and Arrays Catego

Figure 6

13

EUSolver2017

Hacker's Delight Category
CVC4-2017

I Euphony

h & A. Solar-Lezama

ing.

4 Is°60.d-Gp-0Z-py
q1s'60d-1p-02-py .
1 1s'601d-0p-02Z-py
4 1s°60.1d-Gp-6T-pYy

1 |s'gaue|d Bdw

aa=
2

_ 5 |s'zaue|d bdw

- 1s'60id-Tp-6T-PY or 4 1s'Toue|d bdw
- 1s601d-0p-61-PY o 8 1 Is'zay bdw
- 15'601d-Gp-LT-PY i al= {15 To0 Bdw
41s°604d-Tp-LT-pYy _
- 15°601d-0p-£T-PY T Hn - Is'vpJen6 Bdw
- 1s'604d-Gp-GT-pYy 'y - 11s'€ptenb bdw
- Is'604d-Tp-ST-PY o _N 4 |s'zpenb Bdw
4 s'601d-0p-5T-
|5'60.4d-0P-ST-PY ol _n 1 |s'Tpsen6Bdw
15°601d-Gp-yT-py _
1 |s'60ad-1p-p1-pY ~ o 115 ga|dwexa bdw
- 1s'6od-0p-vT-py m o 4 Is'paldwexa” bdw
N
" 9
- 1s'6oid-Gp-€T-py W P 4 |s'ga|dwexa Bdw
q1s'6o4d-Tp-€1-py 0 _
D m 4 1s'zaldwexa” bdw
- 1s60ad-0p-£T-pYy o

o | |s601d-5p-60-pU s 4 |s'o|dwexa bdw
3 - 1s°601d-1p-60-pY ” W, ok -_m {15 1rxew
- 1s'604d-0p-60-pPY ¥ o
15°601d-0p-60-PY 3£ 9 ~ o Em 1 Is'6xew
1s°601d-Gp-80-PY £ - =
£ © <L M S 4 1s'gxew
- 1s°601d-1p-80-PY 'Y o 3 &
- 1s:601d-0p-g0-py & m 9 mr 58 115 exew
4 1s°604d-Gp-£0-PYy m © o -_m {1s'9xew
4 1s°604d-1p-£0-PY -
c ol l_% 41 gxew
1s"604d-0p-£0-PY -
15'604d-Gp-90-py > T -_ 8 1s'pxew
c
- 1s'604d-Tp-90-pY .m ol -_ i 4 Is'Exew
g -0P-90-1 Q
- 1s'6oid-0p-90-pY _.w ol qIszxew
1s"604d-Gp-50-py o
1 |s'601d-1p-50-pYy - s i {isseew
- 15'601d-0p-50-PY s A% {sriew
4 1s°60.d-Gp-y0-py ol -_m His'eTxew
q1s°604d-Tp-¢0-pY ~ X
- 15'601d-0p-t0-PY T -_ 5 eeren
Q .
1 Is'601d-6p-€0-PU o 5% {sorxew
- 1s'6oid-Tp-£0-pY o 4 ISjueisuod

1s"60.d-0p-€0-PY
1s'601d-Gp-z0-Py

4 1s"aAneINWWOd

R. Alur, D. Fisman, R. S

3.
4 1s°60.4d-1p-z0-pYy
1 1s'60d-0p-20-py o _u 1s'TAuradx3un
1 1s'604d-Gp-10-pY - _x - 1s'xagba udx3un
4 1s°604d-Tp-10-PY > v _
28gggggs S8
©88RASH g9 S55888388mAa 555553
AT o oA = <A @9 oo mHA 4o — S o =1
scocom™ S ge8e8R2AdaZe T ILERS8S
sg822 T mAaosSd =) PN
S &= n coca8@™ 8o
= 88 =
awig-popjiem 9zis-1dxa —otI13-)d0|d||lem 9zis-adxa-

benchmarks

f Hacker’s Delight and Integers Categories of the General Track.

101 O

Evaluati

Figure 7

1S

: Results and Analys

SyGuS-Comp 2016

14

Program Repair Category

EUSolver2017

CvC4-2017

I Euphony

°
s 1

Socgggoao

R R- R R

mY 9o Mg m

AN oo A=

oo &m™

o O = =

ISR

S o

awin-pop|em 9z)s-adxa

Is'63

[:2

Is'43

1593

I1s'G3

Is'v3

Is"€3

Is'023

Is'ad

1s'8T3

IS'LT3

IS'ST3

ISv13

IS'€ET3

I1s°213

IS'TT3

IS'0T3

IS'T3

benchmarks

ICFP Category

EUSolver2017

CVC4-2017
3 333333333333

I Euphony

3 3 3 3 3 3

3 3 3 3 3 3 3 3

3

3 3 3

3 3 3 3 3 3 3 3 3 3 2

3

3 3 3 3 3

" ~l= S

3 ~B 5

| o

L I_M

| ~

L l_m

| o

E

L =l

r «[E 2

L =|m

r s

H %
o

Fo «Ell 2

P S =l

Lo ~HB. BN

Fo. - ==

PR I 8

3 Elz

3 IEns

r =l

L =la

L =|n

L B

| oo

8
| it
]

L ®
Sccocscosma
ggE8887cs
I e N A

SEIPIZoP|em
se=

1S°000T 6 dj!
1S'00T°66 dj!
10001796 dJ2!
1S'0T 796 djo!
100156 dj!
1S°000T 6 dJo!
1S'00T ¥6 dj!
1S'000T €6 dJo!
10T L8 dJo!
1S°00T 28 dj!
1S'0T 28 dJ!
1S°000T 18 dJ2!
1S°000T £ dy!
10T L djot
1S0T €L djd!
10T 2L dpr
1S'0T 69 djo!
1S°000T"89 djo!
10T ¥9 djo!
1S°000T"S dj!
1S°000T795 dJ2!
1S°000T S dJa!
1S0T TS djo!
1S°000T S¥ djo!
1S'0T St djd!
1S'00T 6€ dj!
1S°0T 8€ djo!
10T z€ djo!
10T 0€ djo!
1S'0T 82 djo!
1S°000T5Z dja!
1S°000T" TZ djo!
1S'0T 05T djd!
1S°000T ¥T djo!
1S'000T LpT djo!
1S°000T v¥T d
1S°00T ¥pT djo!
1S'000T €YT A1
IS'0T 6ET dJa!
1S'00T SET dja!
1S°000T vET dJo!
10T GZT dj!
1S°00T 8TT djo!
1S0T 81T djo!
1S'00T ¥TT dja!
1S'000T ETT djo!
10001 SOT dJo!
1S°00T SOT djo!
1S0T vOT djo!
IS0T €0T dj!

benchmarks

ries of the General Track.

Evaluation of Program Repair and ICFP Catego

Figure 8

15

h & A. Solar-Lezama

ing.

R. Alur, D. Fisman, R. S

CLIA Track - Part 1

EUSolver2017

I DryadSynth

CVvC4-2017

B Euphony

00 00 0 00 00 00 00 00 00 00 00

109
67
I g
mam

1
]

1
an
_

[1000,3600) |-
[300,1000) |
[100,300) |
[30,100)
[10,30) |-
[3,10) |-

[0.1) -

awi-yd0|d|jem

[1,1

0,100) |-

9zis-adxa

|IS'ETXew by
|s'zTXew by
|IS'TTXew by
|Is'0TXew by
|S'sounyanly” by
|s'sounyybia” by

1s'G 6 wns Aelse By
IS'ST 6 wns Aewe by
1S'S 8 wins Aelse by
1S'ST 8" wns Aewie by
1S'S” L wins™Aelse By
1S'GT L wns Aelie by
1S'G"9 wns Ae.ie By
|S'GT 9 wns Aewe 6y
1S'GT° G wns Aewe By
1S’ ¢ wins Aelse 6y
IS'ST v~ wns Aewe by
1S'S € wins Aelse By
1S'ST € wins Aede By
1S'S"Z wins Ae.se 6y
1S'GT 2 wins Aele by
|s'G 0T wns Aewe 6y
IS'GT 0T wns Aesie By
1S'6" yd1eas Aewie by
1s'8"YoJeas Aelie by
1s'L"yoJeas Aedse by
1S'9 ydieas Aeise by
1S’ YoJeas Aelse By
IS ydieas Aedse by
1S"€ ydieas Aesse by
1" yoieas Aesse by
1S'GT Uduieas Aedse by
1"t Udiess Aesie by
IS"€T Ydueas Aesie by
1S'ZT ydueas Aesie™ by
IS'TT Ydueas Aesie by

|S'0T YdJeas Aetse by

benchmarks

CLIA Track - Part 2

EUSolver2017

B DryadSynth

CVC4-2017

© 0 o0
II

W Euphony

0 00 00 0 00

4

3

4

4

4

5

o o 0 oo
3462
7
1
o] o]0

£ L 7

>3600

[1000,3600;
[300,1000

awn-}d0pjem

9zis-adxa

|S*Zounyuay by

IS ToUNyudY By
IS*Sounyxis by
|S'SOUNJUIASS” By
Is*ylelwoukjod By
Is*€lelwoukjod By
|s*zlelwouAjod By
Is*TIelwoukjod By
|s*jeiwouk|jod By
|s*sounyauiu” by
Is'gaueld bdw by
|s'zaueld bdw by
|s'Taueld bdw By

IS Zo) Bdw By

IS 1) Bdw By
Is'ypienb bdw 6y
Is'epsenb bdw by
Is'zpsenb bdw by
Is'Tpsenb bdw by
Is*gajdwexa bdw by
Ispajdwexa bdw by
Iseajdwexa bdw by
Is*zajdwexa bdw by
Is'Toldwexa” bdw by
Is"6xew by
Is'gxew” by
Is*Lxew by
Is"9xew by
Is*gxew” by

IS pxew” by
Is"exew” By
Is"zxew by
IS'STXew by
IS"pTXew by
1S°4"2ZON B}

1527 ZZON 6y

benchmarks

f CLIA track benchmarks.

Evaluation o

Figure 9

1S

: Results and Analys

SyGuS-Comp 2016

16

INV Track - Part 1

I LoopinvGen

EUSolver2017

B DryadSynth

CVC4-2017

I Euphony

>3600
[1000,3600) |-

awi-yd0|d|jem

[300,1000) |

[100,300) | 204 164
[30,100) -

[10,30) |

9zis-adxa

|S'SIeA"EZ X2
|S'SIBA™ XD
(¥4
|S'SIBA"HTXD
Is'dwisyTxo
|S'PTXo
|S"MaU-pTXD
|S'SIBATTTXD
|S"MU-SIBA TTXD
|s'|dwis TTX®
|S*mau-|dwis TTXa
ISTTTX®
|S'"MaU-TTXd
|S'Ssien dap
|S'MaU-SIBA D3P
|s'|dwis dap
|s*mau-|dwis dap
1s"29p

|S"Mau-59p
|s*dwbbd
|s*mau-dwbbhd
|s'sJen” ziebad
|S*MaU-S1eA” z1ehad
IS z4ebad
|s'Mau-ziehad
|s'sien” 1iehad
|S'MaU-S1eA” TJehad
|s'Tlebad
|S*Mau-Tiehad
|s'sien”Aese
|s*dwis™Aese
|s'Aeste
|s'mau-Aesre
|s*djue

|s'mau-djue

benchmarks

INV Track - Part 2

Il LoopinvGen

EUSolver2017

I DryadSynth

CVC4-2017

B Euphony

3

>3600
[1000,3600) |-

[300,1000)
[100,300) |
[30,100) |

aw-jdop|em

30)

[10

9zis-adxa

0,100) } a1

[

0,300)

100

Is'Tm
|s'puasA
|S'SIeA”EXDIY
|s'€xan
|S'SIeA” X34}
|s'Txeas)
|S'sien seoey
|s'sede)
|S'SIeA” puUNS
|s'dwis”pwins
|s'pwins
|S'SIeA” EWNS
|s'€wns
|S'SIeA” TWNS
|s'Twns
|s'dwis gx1ew
|s'Zx1eWw
|S'sdeA dul
|s'dwis oul
1s"oul
|S'PNIUN0>ej0Y
Is'ppe_e|j0Y
Is'vreloy
Is"Tr'eloy
1s'0z"el0y
Is'L0"ejoy
Is’s0"ejoy
|S*LzeInw.oy
|S*Gze|INwIo)
|s*Zze|Inw.o)
|s'sien b1y
15661
Is'sten”gby
15°€6Y
|s'sien” 161y
|S'mau-sien 16y
15'T6Y
|S'mau-161y

1s'Lx®

benchmarks

t track benchmarks.

Evaluation of Invarian

Figure 10

17

h & A. Solar-Lezama

ing.

R. Alur, D. Fisman, R. S

PBE Strings Track - Part 1

EUSolver2017

CvC4-2017

2 2 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3 3 3 3 3 333 3 3333 3333330000 3 33330000 3 3

W Euphony

1

3 3 2

—
)
<

£ I
mI
=
- I
a

1
B
a4

2

7 6 6 5
!

3

7
0

]

111111

14 14 14 14

_
0

0 00 %0

16 16

TP
o0

>3600

[000,3600) 1-

§300,1000)

=

[10,30)
[3.10) |
[1.3)f
[0, 1)

[100,300) [-231235208
[30,100)

S ELIRIIY

1000

|s'poys auoyd

|s"Hoys” p-auoyd

|s'Moys” g-auoyd

|s'€-auoyd

|s*buo|-g-auoyd
|s'3eadai-buoj-g-auoyd
|s"Hoys” z-auoyd

IS z-auoyd

|s*buo|-z-auoyd
|syeadal-buoj-z-auoyd
|s'Moys” 1-auoyd

|s"Woys oT-auoyd
Is"0T-auoyd
|s*buol-0T-auoyd
|syeadal-buoj-gT-auoyd
|s'T-auoyd

|s*buo|-T-auoyd
|s"yeadal-buo|-T-auoyd
|S"HOYS dulquod-aweu
|S"aUIqWI0d-aWeu
|s*Buoj-aulquod-aweu
|s*yeadal-buoj-auiquiod-aweu
|S"HOYS p-aulquiod-aweu
|S"p-duIquod-aweu
|s*6uo]-p-auiquiod-aweu
|s'1eada.-Bbuo|-p-auiquiod-aweu
|S"HOYs ™ €-auIquiod-aweu
|S*€-2UIqUI0d-aWeu
|s*Buo|-g-auIquiod-aweu
|s3eadal-buoj-g-auiquiod-aweu
|S"HoYs” z-auiquiod-aweu
|S'Z-2uUIquI0d-aWeu
|s*Buoj-Z-3uIquIod-aweu
|syeadal-buol-z-auiquiod-aweu
|s'llews aweulse|
|s'aweulse|

|s'6uoj-aweusse|
|s'1eadau-buoj-aweuise|

|syeadas-buol-sjeniul
|S°|[ews dweulsily
|s"aweulsayy
|s*Buoj-aweulsily
|s3eadas-buol-aweuisiy
|S'llews aweu-1p
|s'aweu-1p
|s*buol-aweu-1p
|s"yeadal-buo-aweu-1p
Is'ljleWs” sax1q

15's3341q

|s*Bbuo|-saxiq
|s"yeadal-buol-saxiq

benchmarks

PBE Strings Track - Part 2

CVvC4-2017 EUSolver2017

B Euphony
3 3 33 3 3 3333333 3333233222?223333333333311

11 011000000000

1.0 1
T

1

- -

1

291392791D56312212P65254286384D772202882897732

>3600

[g000.3600) -

[100,300) |-
[30,100) |
[10,30)

1-yR0|djIeM

9zis-4dxa”

IS"HOYS 9 AlUN

1S'9 AlUN
|s'Buol-9~Alun
|s3eadas-buol-9~Alun
|S'HOYS G AlUN

1SS AIUN
Is*Buo|-g~AluN
|s3eadas-buol-g~Alun
IS"HOYS ¥ Alun

IS AlUN

Is*Buo|-y Alun
|s'yeadas-buol-y Alun
IS'HOYS” € AlUN

IS'€ Alun
|s'buoj-€~Aun
|s3eadas-buol-g~Alun
|S'HOYS Z Alun

1S°Z Aun
|s*Buo|-z”Alun
|s3eadas-Buol-z Alun
IS'MoYs T Alun
IS'T_AlUN
|s*Buol-T_AluN
|syeadas-buol-1~Alun
|S"HOYS aWeU-35IaAa
|S'aWeU-9SIaA
|s*Buoj-aweu-asianal
|s*3eadai-buo|-aweu-asianal
|s*auoyd
|s*buoj-auoyd
|s"3eadaJ-buol-auoyd
|s"Hoys g-auoyd
Is'6-auoyd
|s*Buo|-g-auoyd
|syeadau-buol-g-auoyd
|s'Moys”g-auoyd
|s'g-auoyd
|s*buo|-g-auoyd
|syeadai-buo|-g-auoyd
|s"1oys~ z-auoyd
Is*£-auoyd
|s*Buo|-£-auoyd
|syeadau-buol-£-suoyd
|s'Moys 9-auoyd
|s'9-auoyd
|s*'buo|-9-auoyd
|s3eadai-buoj-9-auoyd
|s'Hoys”g-auoyd
Is'g-auoyd
|s*buo|-g-auoyd
|syeadai-buol-g-auoyd
Is*p-auoyd
|s*buo|-p-auoyd
|s*3eadai-buo|-y-auoyd

benchmarks

track benchmarks.

ings

f PBE Str

101 O

Evaluati

Figure 11

18 SyGuS-Comp 2016: Results and Analysis

7 Summary

This year’s competition consisted of over 1500 benchmarks, 250 of which where contributed this year.
Six solvers competed this year, out of which four by developers submitting a tool for SyGuS-Comp for
the first time. All tools preformed remarkably, on both existing and new benchmarks. In particular, 65%
of the new benchmarks were solved.

An impressive progress was shown this year in solving the strings benchmarks of the programing by
example track. Analyzing the features of benchmarks that are still hard to solve, we see that these include
those with either (i) multiple functions to synthesize or (ii) where the specification invokes the functions
with different parameters or (iii) those that use the let expression for specifying auxiliary variables, or
(iv) the grammar is very general consisting of much more operators than needed, or (v) the specification
is partial in the sense that the domain of semantic solutions is not a singleton.

References

[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak & Abhishek Udupa (2013): Syntax-guided synthesis.
In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013,
pp- 1-8.

[2] Rajeev Alur, Pavol Cerny & Arjun Radhakrishna (2015): Synthesis Through Unification. In: Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II, pp. 163-179, doi;10.1007/978-3-319-21668-3_10.

[3] Rajeev Alur, Dana Fisman, Rishabh Singh & Armando Solar-Lezama (2015): Results and Analysis of SyGusS-
Comp’l5. In: SYNT, EPTCS, pp. 3-26, doi;10.4204/EPTCS.202.3|

[4] Rajeev Alur, Arjun Radhakrishna & Abhishek Udupa (2017): Scaling Enumerative Program Synthesis via
Divide and Conquer. In: Tools and Algorithms for the Construction and Analysis of Systems - 23rd Inter-
national Conference, TACAS 2017, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, pp. 319-336,
doi:10.1007/978-3-662-54577-5_18.

[5] Clark Barrett, Aaron Stump & Cesare Tinelli: The SMT-LIB Standard Version 2.0.

[6] Hassan Eldib, Meng Wu & Chao Wang (2016): Synthesis of Fault-Attack Countermeasures for Cryptographic
Circuits. In: Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 17-23, 2016, Proceedings, Part II, pp. 343-363, doi:10.1007/978-3-319-41540-6_19.

[7] Pranav Garg, Daniel Neider, P. Madhusudan & Dan Roth (2016): Learning invariants using decision trees
and implication counterexamples. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pp.
499-512, doi:10.1145/2837614.2837664.

[8] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues & Willem Visser (2017): S3: syntax- and
semantic-guided repair synthesis via programming by examples. In: FSE, pp. 593-604.

[9] Daniel Neider, P. Madhusudan & Pranav Garg (2015): ICE DT: Learning Invariants using Decision Trees
and Implication Counterexamples. Private Communication.

[10] Saswat Padhi & Todd D. Millstein (2017): Data-Driven Loop Invariant Inference with Automatic Feature
Synthesis. CoRR abs/1707.02029. Available at http://arxiv.org/abs/1707.02029.

[11] Saswat Padhi, Rahul Sharma & Todd D. Millstein (2016): Data-driven precondition inference with
learned features. In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pp. 42-56,
doii10.1145/2908080.2908099.

http://dx.doi.org/10.1007/978-3-319-21668-3_10
http://dx.doi.org/10.4204/EPTCS.202.3
http://dx.doi.org/10.1007/978-3-662-54577-5_18
http://dx.doi.org/10.1007/978-3-319-41540-6_19
http://dx.doi.org/10.1145/2837614.2837664
http://arxiv.org/abs/1707.02029
http://dx.doi.org/10.1145/2908080.2908099

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 19

[12]

[13]

[14]

[15]

[16]

Mukund Raghothaman & Abhishek Udupa (2014): Language to Specify Syntax-Guided Synthesis Problems.
CoRR abs/1405.5590.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli & Clark W. Barrett (2015):
Counterexample-Guided Quantifier Instantiation for Synthesis in SMT. In: Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
II, pp. 198-216, doij10.1007/978-3-319-21668-3_12,

Andrew Reynolds & Cesare Tinelli (2017): SyGuS Techniques in the Core of an SMT Solver. To appear in
this issue.

Aaron Stump, Geoff Sutcliffe & Cesare Tinelli (2014): StarExec: A Cross-Community Infrastructure for
Logic Solving. In: Automated Reasoning - 7th International Joint Conference, IICAR 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, pp. 367-373,
doii10.1007/978-3-319-08587-6_28.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M. K. Martin & Rajeev
Alur (2013): TRANSIT: specifying protocols with concolic snippets. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pp.
287-296, doii10.1145/2462156.2462174.

http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1145/2462156.2462174

	Introduction
	Participating Benchmarks
	Participating Solvers
	Experimental Setup
	Results Overview
	Detailed Results
	Summary

