
Submitted to:
SYNT 2015

c© R. Alur, D. Fisman, R. Singh & A. Solar-Lezama
This work is licensed under the
Creative Commons Attribution License.

Results and Analysis of SyGuS-Comp’15

Rajeev Alur Dana Fisman
University of Pennsylvania

Rishabh Singh
Microsoft Research

Armando Solar-Lezama
Massachusetts Institute of Technology

Syntax-Guided Synthesis (SyGuS) is the computational problem of finding an implementation f that
meets both a semantic constraint given by a logical formula ϕ in a background theory T , and a
syntactic constraint given by a grammar G, which specifies the allowed set of candidate implementa-
tions. Such a synthesis problem can be formally defined in SyGuS-IF, a language that is built on top
of SMT-LIB.

The Syntax-Guided Synthesis Competition (SyGuS-Comp) is an effort to facilitate, bring together
and accelerate research and development of efficient solvers for SyGuS by providing a platform
for evaluating different synthesis techniques on a comprehensive set of benchmarks. In this year’s
competition we added two specialized tracks: a track for conditional linear arithmetic, where the
grammar need not be specified and is implicitly assumed to be that of the LIA logic of SMT-LIB,
and a track for invariant synthesis problems, with special constructs conforming to the structure of
an invariant synthesis problem. This paper presents and analyzes the results of SyGuS-Comp’15.

1 Introduction

Syntax guided synthesis is a form of synthesis where in addition to a specification, the user provides a
syntactic description of the space of possible programs that the synthesizer is allowed to consider. This
style of synthesis was popularized by the Sketch project [19] and has become an important approach
underpinning a variety of synthesis efforts (e.g. [9, 20, 22]). Within the common framework of syntax
guided synthesis, however, there are a number of possible approaches that can be used to solve a given
synthesis problem, and until recently, research on the relative merits of these different approaches had
been hampered by the difficulty of making direct comparisons about algorithms implemented in different
systems and with very different interfaces.

The Syntax Guided Synthesis competition (SyGuS-Comp) was started as a way to accelerate ad-
vances in the field by offering a uniform standard notation and formalism for describing these problems,
allowing for direct comparisons between different solution methods. The SyGuS formalism [13] is de-
rived from the SMT-LIB format [5], a popular format for describing SMT problems, with the goal of
making it easy to learn for users and easy to support for synthesizer developers. In the short time that the
formalism has been in public circulation, it has already performed well in many of these goals. It has pro-
vided important insights into the relative merits of different algorithms [1, 2] which have been exploited
to help develop new algorithms [8], and has been used to evaluate brand new algorithms [3, 10, 14].
Beyond synthesizer developers, there is a growing community of users that is coalescing around the
formalism.

The SyGuS problem is formally defined as the problem of finding an implementation of a function
f that meets both a semantic constraint given by a logical formula ϕ in a background theory T , and
a syntactic constraint given by a grammar G. More concretely, let ϕ be a formula in some theory T
that involves some free variables x0, . . .xi and uses an unknown function f . The goal of synthesis is to
discover an implementation fimp such that replacing fimp for f in ϕ makes the formula valid for all values
of the free variables.

∀x0, . . .xi. ϕ[f/ fimp]

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Results and Analysis of SyGuS-Comp’15

The syntactic restriction implies that the function fimp must belong to the grammar G also provided by
the user.

Example As an example, consider the problem of finding a bit-vector function that returns a bit-vector
with a 1 in the position of the least significant zero in its input bit-vector and zero everywhere else. This
problem is defined in terms of the theory of bit-vectors, which includes operations such as bitwise and,
bitwise or, as well as left and right shifts and basic arithmetic among bit-vectors. The example problem
can be formalized in terms of two constraints that must be satisfied by the desired function. The first
constraint is that if x is not zero, f (x) should have a one in the same position as x has a zero, so bitwise
and (&) of f (x) and the bitwise negation of x (∼x) should not be zero.

∀x. x > 0⇒ (f (x) & ∼ x)> 0

The way we enforce that there is a single one and that it corresponds to the least significant zero is by
enforcing that if we shift f (x) right by any amount, then bitwise anding with the bitwise negation of x
will now yield zero.

∀x,y. y > 0⇒ (f (x)� y & ∼ x) = 0

These two constraints can be expressed succinctly in SyGuS with the following notation.

(set-logic BV)

(synth-fun f ((x (BitVec 32))) (BitVec 32)

((Start (BitVec 32) (x 0 1

(bvand Start Start)

(bvor Start Start)

(bvnot Start)

(bvadd Start Start)))))

(declare-var x (BitVec 32))

(declare-var y (BitVec 32))

(constraint (=> (bvult 0 x) (bvult 0 (bvand (f x) (bvnot x)))))

(constraint (=> (bvult 0 y) (= 0 (bvand (bvshr (f x) y) (bvnot x)))))

(check-synth)

The set-logic directive indicates that the constraints should be interpreted in terms of the theory of
bitvectors. The directive declare-var is used to declare x and y as 32-bit bitvector variables. The con-
straints are introduced with the directive constraint, and check-synth marks the end of the problem
and prompts the synthesizer to solve for the missing function. Crucially, in order for the synthesizer to
generate f , it needs a grammar, which is provided as part of the synth-fun directive. In this example,
we have significantly reduced the space of possible functions by restricting the search to expressions
involving bitwise and, or, bitwise negation, sum and the constants 0 and 1, instead of asking the system
to consider completely arbitrary expressions in the theory of bitvectors.

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 3

1.1 Conditional Linear Integer Arithmetic Track

For problems where the grammar consists of the set of all possible integer linear arithmetic terms, it
is sometimes possible to apply specialized solution techniques that exploit the information that decision
procedures for integer linear arithmetic are able to produce. For this reason, the 2015 SyGuS competition
included a separate track where the grammar for all the unknown functions was assumed to be the entire
theory of Integer Linear Arithmetic with ITE conditionals.

Example As a simple example, consider the problem of synthesizing a function max2 that produces
the maximum of two integers. The problem can be specified with the constraint below:

(set-logic LIA)

(synth-fun max2 ((x Int) (y Int)) Int)

(declare-var x Int)

(declare-var y Int)

(constraint (>= (max2 x y) x))

(constraint (>= (max2 x y) y))

(constraint (or (= x (max2 x y)) (or (= y (max2 x y)))))

(check-synth)

Note that the definition of the unknown function max2 does not include a grammar this time, but
because the problem is defined in the theory of linear integer arithmetic (LIA), the default grammar
consists of all the operations available in the theory.

1.2 Invariant Synthesis Track

One of the main applications of SyGuS is invariant synthesis. For this problem, the goal is to discover
an invariant that makes the verification condition for a given loop valid. Such a problem can be easily
encoded in SyGuS, but invariant synthesis problems have structure that some solution algorithms are
able to exploit and that can be lost when encoding it into SyGuS. For this reason, the 2015 installment
of the competition also included a separate track for invariant synthesis problems where the additional
structure is made apparent. In the invariant synthesis version of the SyGuS format, the constraints are
separated into pre-condition, post-condition and transition relation, and the grammar for the unknown
invariant is assumed to be the same as that for the conditional linear arithmetic track.

Example For example, consider the following simple loop.

Pre: i >= 0 and j=j0 and i=i0;

while(i > 0){

i = i - 1;

j = j + 1;

}

Post: j = j0 + i0;

Suppose we want to prove that the value of j at the end of the loop equals the value of i + j at the
beginning of the loop. The verification condition for this loop would check that (a) the precondition
implies the invariant, (b) that the invariant is inductive, so if it holds before an iteration and the loop
condition is true, then it will hold after that iteration, and (c) that the invariant together with the negation
of the loop condition implies the postcondition. All of these constraints can be expressed in the standard

4 Results and Analysis of SyGuS-Comp’15

SyGuS format, but they can be expressed more concisely using the extensions explicitly defined for this
purpose. Specifically, the encoding will be as follows.

(set-logic LIA)

(synth-inv inv-f ((i Int) (j Int) (i0 Int) (j0 Int)))

(declare-primed-var i0 Int)

(declare-primed-var j0 Int)

(declare-primed-var i Int)

(declare-primed-var j Int)

(define-fun pre-f ((i Int) (j Int) (i0 Int) (j0 Int)) Bool

(and (>= i 0) (and (= i i0) (= j j0))))

(define-fun trans-f ((i Int) (j Int) (i0 Int) (j0 Int)

(i! Int) (j! Int) (i0! Int) (j0! Int)) Bool

(and (and (= i! (- i 1)) (= j! (+ j 1)))

(and (= i0! i0) (= j0! j0))))

(define-fun post-f ((i Int) (j Int) (i0 Int) (j0 Int)) Bool

(= j (+ j0 i0)))

(inv-constraint inv-f pre-f trans-f post-f)

(check-synth)

The directive (declare-primed-var i) is equivalent to separately declaring i and i!, where the
primed version of the variables is used to distinguish their value before and after the loop body. Just like
in the earlier example, the function to be synthesized inv f does not include a grammar, so the entire
LIA grammar is assumed. Here the return type is also not given and is assumed to be Bool since invariant
are assumed to be predicates. The constraint inv-constraint is syntactic sugar for the full verification
condition involving the invariant, precondition, postcondition and transition function.

1.3 SyGuS-Comp’14 summary

The first SyGuS competition, SyGuS-Comp’14 consisted of a single track — the general track — in
which the benchmark provides the grammar describing the desired syntactic restrictions for that bench-
mark. The background theory could be either linear interger arithmetic or bitvectors. Five solvers com-
peted in SyGuS-Comp’14. The solver who won the first place was the ENUMERATIVE solver which
solved 126 out of 241 benchmarks.

1.4 SyGuS-Comp’15 summary

The 2015 instance of SyGuS-Comp was the second iteration of the competition and the first iteration to
include the separate conditional linear integer arithmetic and invariant synthesis tracks. As elaborated
in Section 2, there were a total of eight solvers submitted to the competition which represent a range
of solution strategies. In the rest of the paper, we describe the details of the benchmarks used for the

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 5

competition, the solution approaches used by each of the participants and the results of the competition
on each of the different categories of benchmarks.

2 Competition Settings

2.1 Participating Benchmarks

We collected several benchmarks from various sources using an open call for benchmarks, from which
we sampled 309 benchmarks for the General Track, 73 benchmarks for the Invariant Synthesis Track, and
67 benchmarks for the Conditional Linear Arithmetic track. These benchmarks can broadly be classified
into following 13 categories (11 categories for the General Track). The number of benchmarks in each
of these categories and the contributors for the new set of benchmarks is shown in Table 1.

• Array Benchmarks: This category consists of benchmarks that involve synthesizing a function
over an integer array of a bounded size. Since the current SyGuS-IF format does not support
arrays, we represent them using an ordered sequence of integer variables. One major class of
benchmarks in this category is array-search, which requires to synthesize a loop-free function
to find an appropriate index for insertion of a given value into a sorted array of size n. Another
major class of benchmark is array-sum-m-n, which requires to synthesize a function to find first
two elements in an array of size n whose sum is greater than m.

• Let Benchmarks: The benchmarks in this category use the let construct as specified in the
SyGuS-IF format. The let expressions allow synthesizers to represent multiple occurrences of
common subexpressions succinctly, which helps in improving the scalability. The let expressions
in specification constraints can be desugared, but they can not be desugared when used in gram-
mar productions. For example, the production T := (let [z=U] z + z) denotes sum of two
identical subexpressions built using addition operator, but the same can not be specified using a
context-free grammar.

• Invariant Generation Benchmarks (Bounded and Unbounded Integers): This category of
benchmarks consists of loop invariant synthesis problems from the domain of program verifica-
tion. Some of these benchmarks are obtained from the Competition of Software Verification (SV-
COMP) and others are from the literature on invariant synthesis. It involves two sub-categories:
one that uses unbounded integers and second that bounds the range of integers that can be used for
the invariant expression.

• ICFP Benchmarks: This benchmarks in this category are some of the challenging problems taken
from the 2013 ICFP Programming Competition on program synthesis. These benchmarks in-
volve synthesizing bit-vector functions from a domain-specific language of bit-vectors consisting
of primitive bitwise operators such as shift, not, add, or, xor etc. The language also consists of
a constrained comparison operator and a fold operator. The correctness specification for these
benchmarks is provided using 64-bit input-output bit-vector examples.

• Hacker’s Delight Benchmarks: This category involves benchmarks that are derived from 20 dif-
ferent bit-manipulation problems from the Hackers Delight book. For these benchmarks, there are
3 increasingly challenging levels of grammars (d0, d1, and d5) that are provided for the unknown
function, where the level d0 consists of only operators that are necessary for the unknown function
and the level d5 consists of complete bit-vector grammar.

6 Results and Analysis of SyGuS-Comp’15

Benchmark Cateogry Number of Benchmarks Contributors (in 2015)
Arrays 31
Bitvectors 5
CompilerOptimizations 21 Nissim Ofek (Yale): 21
HackersDelight 44
ICFP 50
Integers 34 Shambwaditya Saha (UIUC): 14
InvariantGeneration 28
InvariantGenerationUbdd 28
Let 15
MotionPlanning 12 Sarah Chasins (UC Berkeley): 12
MultipleFunctions 41
INV Track 73 Pranav Garg (UIUC): 51
LIA Track 67

Table 1: The number of benchmarks in each individual category used in SyGuS-COMP 2015 together
with the number of new contributions and their contributors.

• Integer Benchmarks: These benchmarks involve synthesizing functions that involve complex
branching structure over linear arithmetic expressions. For example, the max benchmarks require
to synthesize a function using comparison operator to compute maximum of n integers.

• BitVector Benchmarks: This category of benchmarks involve synthesizing a complex function
over a set of Boolean values represented using a bit-vector. For example, the parity benchmarks
compute the parity of a given set of Boolean values, and the Morton benchmarks compute the
Morton numbers.

• Compiler Optimization Benchmarks: The benchmarks in this category come from the domain
of compiler optimization where the goal is to synthesize a simpler expression (constrained by a
grammar) that is functionally equivalent with a given complicated expression.

• Multiple Functions Benchmarks: This class of benchmarks consists of synthesis problems that
involve synthesizing multiple unknown functions that satisfy a given set of constraints.

• Motion Planning Benchmarks: The benchmarks in this category come from the domain of robot
motion planning, where the task is to synthesize a function to control robot movement (constrained
by a grammar of possible movements) that reach from one point in space to another while main-
taining some invariant constraints such as no collision.

• LIA Track Benchmarks: The benchmarks in this category come from the General Track cat-
egories such as integer benchmarks, array benchmarks, and motion planning benchmarks. The
grammar for the unknown functions for this category comprises of expressions from the entire
theory of Integer Linear Arithmetic with ITE conditionals as described in Section 3.2.

• INV Track Benchmarks: The benchmarks in this category come from the domain of program
verification, where the pre-condition, transition function, and the post-condition are specified using
explicit constructs in the SyGuS-IF format.

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 7

Solvers

Tracks A
L

C
H

E
M

IS
T-

C
S

A
L

C
H

E
M

IS
T-

C
S

D
T

C
V

C
4-

1.
5-

S
Y

G
U

S

E
N

U
M

E
R

A
T

IV
E

IC
E

-D
T

S
K

E
T

C
H

-A
C

S
O

S
Y

T
O

A
S

T

S
T

O
C

H
A

S
T

IC

LIA 1 1 1 0 0 0 0 0
INV 1 0 1 0 1 0 0 0

General 0 0 1 1 0 2 2 1

Table 2: Solvers participating in each track

2.2 Participating Solvers

A total of eight solvers were submitted to this year’s competition, two of the solvers were submitted
with two configurations. Table 2 summarizes which solver participated in which track and in how many
configurations. Thus a total of 3 solvers participated in both the LIA and the INV tracks. In the general
track participated 5 solvers, out of which 2 with two configurations. Table 2 lists all the submitted solvers
and their authors.

Six of the solvers are based on the CEGIS approach: the enumerative solver (ENUMERATIVE),
the stochastic solver (STOCHASTIC), the Sketch solver (SKETCH-AC), the abstract solution Analyzing
Synthesis Tool (SOSYTOAST), the Alchemist CS solver (ALCHEMIST-CS), and the Alchemis CSDT solver
(ALCHEMIST-CSDT). The approaches of these solvers differ in the way the candidate expression is
chosen.

The enumerative solver enumerates the candidate solutions by increasing length, and tries the small-
est candidate that was not refuted so far. In building new expressions it uses a classification to equivalence
classes based on correctness on the current set of examples. For further details on the enumerative solver
see [1, 2].

The stochastic solver chooses the candidate expression by a probabilistic walk on a graph where
nodes are expressions and edges capture single-edits of the expression parse tree. It uses the Metropolis-
Hastings Algorithm using a score function that is inversely proportional to the number of instances in the
current set of examples, on which the expression is incorrect. For further details see [1, 2].

The Sketch solver follows a symbolic approach to CEGIS and uses an SMT solvers to choose the next
candidate expression [18]. The Sketch Adaptive-Concretization combines symbolic and explicit CEGIS
approaches [8] by randomly concretizing highly influential unknowns. This approaches lends itself to
parallelism. Indeed SKETCH-AC is the only solver that used all four cores in this year’s competition (all
the other solvers used a single core).

The SOSYTOAST solver refines the enumerative CEGIS approach by considering abstract expres-
sions; these are expressions that combine grammar non-terminals and concrete symbols. The idea is
to use an SMT solver to refute impossible abstract expressions, instead of refuting all their respective
concretizations. A check of the feasbility of an abstract expression to be a solution involves qunatifer
alternation. The SMT calls are thus bounded by a small time unit (10 seconds) [15].

The tools ALCHEMIST-CS [12] and ALCHEMIST-CSDT [17] are specialized solvers for the LIA track.
They are base on the Alchemist [16], they both synthesize nested if-then-else expressions, and com-

8 Results and Analysis of SyGuS-Comp’15

Solver Authors
ALCHEMIST-CS Daniel Neider (UIUC), Shambwaditya Saha (UIUC) and P. Madhusudan (UIUC)

ALCHEMIST-CSDT Shambwaditya Saha (UIUC), Daniel Neider (UIUC) and P. Madhusudan (UIUC)
CVC4-1.5-SYGUS Andrew Reynolds (EPFL), Viktor Kuncak (EPFL), Cesare Tinelli (Univ. of Iowa),

Clark Barrett (NYU), Morgan Deters (NYU) and Tim King (Verimag)
ENUMERATIVE Abhishek Udupa (Penn)

ICE-DT Daniel Neider (UIUC), P. Madhusudan (UIUC) and Pranav Garg (UIUC)
SKETCH-AC Jinseong Jeon (UMD), Xiaokang Qiu (MIT), Armando Solar-Lezama (MIT) and

Jeffrey S. Foster (UMD)
SOSYTOAST Heinz Riener (DLR) and Ruediger Ehlers (DLR)

STOCHASTIC Mukund Raghothama (Penn)

Table 3: Submitted solvers and their authors

bine enumeration and constraint-solver based technique to find leaf expressions The ALCHEMIST-CSDT

works in two modes, in the first all variables (qunatified and unquantified) are assumed to be integers,
and in the second variables may be either integers or Booleans. The ALCHEMIST-CS tool can only solve
point-wise SyGuS problems. A SyGuS problem is said to be point-wise if the following holds: let F be
the class of all functions that are solutions to the specification; then any function h that maps each input
to an output consistent to some function in F , is also a solution to the specification.

The ICE-DT [11] tool is a specialized solver for the invariant synthesis track. It builds on the ICE
learning approach [6] — an invariant synthesis approach in which the teacher responses to a given hy-
pothesis may be concrete examples, counterexamples or implication. ICE-DT extends the ICE approach
by using decision trees as suggested in [7].

The CVC4-1.5-SYGUS solver is the only solver that is implemented inside an SMT solver [14]. It
reduces the synthesis problem to an unsatisfibility of quantified SMT formulae. Indeed, as noted in [2, 1],
for linear integer arithmetic problems, suppose the synthesis problem involves two variables x and y, then
it can be articulated as the following quantified SMT satisfiability query: ∃a,b,c. ∀x,y. ϕ[f/ax+ by+
c]. Since traditional SMT solvers are focused on instnatiation-based methods to show unsatisfiability,
the CVC4-1.5-SYGUS tool reformulates LIA problems as unsatisfiability of the synthesis conjecture
∀ f ,∃x0,x1, . . . ,xi,¬ϕ[f ,x0,x1, . . . ,xi]. For non-LIA problems, the CVC4-1.5-SYGUS uses an encoding
of the syntax restrictions using first order variables and uses a deep embedding into an extension of the
background theory T with a theory of algebraic data types.

2.3 Experimental Setup

The solvers were run on the StarExec platform [21] with a dedicated cluster of 12 nodes, where each node
consisted of two 4-core 2.4GHz Intel processors with 256GB RAM and a 1TB hard drive. The memory
usage limit of each solver run was set to 128GB. The wallclock time unit was set to 3600 seconds (thus,
a solver that used all cores could consume at most 14400 seconds cpu time).

The solutions that the solvers produce are being checked for both syntactic and semantic correctness.
That is, a first post-processor checks that the produced expression adheres to the grammar specified in
the given benchmark, and if this check passes, a second post-processor checks that the solution adheres
to semantic constraints given in the benchmark (by invoking an SMT solver).

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 9

0	

20	

40	

60	

80	

IN
V	 LIA

	

Ar
ray
s	

Bit
Ve
cto
rs	

Co
mp
Op
ts	

Ha
cks
Dlg
t	

Icf
p	

Int
eg
ers
	

Inv
Ge
n	

Inv
Ge
nU
bd
d	 Le

t	

Mo
tPl
an
	

Mu
ltF
un
c	

Number	 of	 Benchmark	 Solved	 	
and	 Solved	 Uniquely	 per	 Category	

solved	 uniquely	

solved	

total	

Figure 1: Results on the number of solved benchmarks.

3 Competition Results and Analysis

In this section we present the results of SyGuS-COMP’15. We start with an overview of the results
in subsection 3.1. In subsection 3.2 we try to understand the different features a certain benchmark
may or may not have, and analyze each benchmark category in terms of the mentioned features. In
subsection 3.3 we provide detailed results of the competition — going category by category, we present
for each benchmark the range of times the solver took to solve that benchmark and which solver was the
fastest, and the range of obtained expression sizes, and which solver produced the smallest expression.
Finally, we conclude in subsection 3.4 with some interesting observations and conjectures.

3.1 Results Overview

Figure 1 shows for each track and category (a) the total number of benchmarks (in green), (b) the number
of benchmarks solved by at least one solver (in red), and (c) the number of benchmarks solved by only
one of the solvers (in blue).

Figure 2 on the top shows for each track and category the number of benchmarks solved by each of
the solvers. It is evident from the figure that on the INV track, ICE-DT solved more instances than the
others; it solved 57 out of 67 benchmarks. The Alchemist solver solved 53 benchmarks in the INV track.

In the LIA track the leading solver is CVC4-1.5-SYGUS, which solved 70 out of 73 benchmarks.
The second place goes to ALCHEMIST-CSDT which solved 47 instances.

CVC4-1.5-SYGUS is also the winner in the general track, in which it solved 179 out of 309 bench-
marks. The second place in this track goes to the ENUMERATIVE solver, the winner of last year’s
competition, which solved 139 instances. The third place goes to the STOCHASTIC solver, which solved
109 instances.

Figure 2 on the bottom shows for each track and category the number of benchmarks solved uniquely
by each of the solvers. We say that a solver solved a benchmark uniquely if it is the only solver to solve
that benchmark. It is evident that on the INV track, the ICE-DT solver solved more benchmarks uniquely,
whereas in the LIA track the CVC4-1.5-SYGUS solver solved more benchmarks uniquely. In the general
track, both CVC4-1.5-SYGUS and ENUMERATIVE solved many benchmarks that all the other solvers
did not. It is interesting to see that for each benchmark category, there is a clear winner in terms of the
number of benchmarks solved uniquely.

10 Results and Analysis of SyGuS-Comp’15

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	

IN
V	 LIA

	

Ar
ray
s	

Bit
Ve
cto
rs	

Co
mp
Op
ts	

Ha
cks
Dlg
t	

Icf
p	

Int
eg
ers
	

Inv
Ge
n	

Inv
Ge
nU
bd
d	 Le

t	

Mo
tPl
an
	

Mu
ltF
un
c	

Number	 of	 Benchmark	 Solved	
per	 Solver	 per	 Category	

StochasMc	

SosyToast	

Sketch-‐AC	

ICE	 DT	

EnumeraMve	

CVC4-‐1.5	

Alchemist	 CSDT	

Alchemist	 CS	

0	

5	

10	

15	

20	

25	

IN
V	 LIA

	

Ar
ray
s	

Bit
Ve
cto
rs	

Co
mp
Op
ts	

Ha
cks
Dlg
t	

Icf
p	

Int
eg
ers
	

Inv
Ge
n	

Inv
Ge
nU
bd
d	 Le

t	

Mo
tPl
an
	

Mu
ltF
un
c	

Number	 of	 Benchmark	 Solved	 Uniquely	
per	 Solver	 per	 Category	

StochasKc	

SosyToast	

Sketch-‐AC	

ICE	 DT	

EnumeraKve	

CVC4-‐1.5	

Alchemist	 CSDT	

Alchemist	 CS	

Figure 2: Results on the number of solved benchmarks per solver per category.

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 11

3.2 Benchmarks’ Features

Since the solving strategies for synthesizers can be greatly influenced by the problem representation, we
quantify here some different features that are exhibited by the benchmarks from different categories in
Table 3.2.1 We consider here four main categories: 1) whether the invocation of the unknown function is
always present with the same set of arguments (single invocation) or there are multiple different function
invocations (multiple invocation), 2) whether there is a single unknown function (single unknown) or
multiple unknown functions (multiple unknown), 3) whether the specification constraint is complete
(complete spec) or partially specified using input-output examples (partial spec), and finally 4) whether
the grammar for the unknown function is restricted, semi-general, or general.

Function Invocation We say a benchmark belongs to the single invocation class if the unknown func-
tion is called (possibly multiple times) with the same set of arguments in the specification constraint. For
example, consider the specification constraint for the max4 benchmark. This benchmark belongs to the
single invocation class because the max4 function is always called with the same set of arguments x, y,
z, and w.

(constraint (>= (max4 x y z w) x))

(constraint (>= (max4 x y z w) y))

(constraint (>= (max4 x y z w) z))

(constraint (>= (max4 x y z w) w))

(constraint (or (= x (max4 x y z w))

(or (= y (max4 x y z w))

(or (= z (max4 x y z w))

(= w (max4 x y z w))))))

Similarly, we say a benchmark belongs to the multiple invocation class if the unknown function is
called multiple times with different set of arguments. For example, consider the icfp 7 10 benchmark,
where the unknown function f is called multiple times with different set of arguments.

(constraint (= (f #x1be88589ba201842) #xe4177a7645dfe7bd))

(constraint (= (f #x49ea2ae53e599623) #x93d455ca7cb32c46))

(constraint (= (f #xea82cc5e6104247d) #xea82cc5e6104247d))

(constraint (= (f #x75820d31bed79b87) #xeb041a637daf370e))

(constraint (= (f #xe682665199ee31a8) #x197d99ae6611ce57))

Number of Unknown Functions We say a benchmark belongs to the class of single unknown class if
there is only one unkown function that needs to be synthesized. For example, the max4 and icfp 7 10

benchmarks above require to synthesize a single function max4 and f respectively. The benchmarks that
require to synthesize multiple unknown functions are said to belong to the multiple unkown class. For
example, consider the specification constraint from the s8 benchmark that requires to synthesize three
unknown functions f1, f2, and f3, such that their sum is equal to a given linear arithmetic expression.

(constraint (= (+ (+ (f1 x y z) (f2 x y z)) (f3 x y z)) (+ (+ x y) z)))

(constraint (= (f2 x y z) (- y 1)))

1The mentioned features may not exist in all benchmarks of the category, but they are present in most of the benchmarks in
that category.

12 Results and Analysis of SyGuS-Comp’15

Benchmark Function # Unkown Specification Grammar
Category Invocations Functions Constraint Generality
Array Single Single Complete Restricted
Let Single Multiple Complete Restricted
Invariant Generation Multiple Single Complete General
ICFP Multiple Single Partial General
HackerDel-d0 Single Single Complete Restricted
HackerDel-d1 Single Single Complete Semi-General
HackerDel-d5 Single Single Complete General
Integer Single Single Complete Semi-General
Bitvector Single Single Complete Semi-General
CompilerOpts Single Single Complete Restricted
MultipleFuncs Multiple Multiple Partial Restricted
Motion Planning Multiple Single Complete Semi-General
LIA Track Single Single Complete General
INV Track Multiple Single Partial General

Table 4: The list of features present in benchmarks from different categories.

We note that multiple unknown functions can be theoretically represented as a single unknown func-
tion by taking the union of respective grammars of the functions and adding a new Start non-terminal.
But, we still distinguish benchmarks into different categories based on number of unknown functions as
some solvers might exploit the additional structural information present in the benchmarks.

Specification Constraint Since the specification language for the SyGuS-IF is based on constraints
and is therefore quite general, the specification for different benchmarks can be defined with varying
levels of completeness. We say a benchmark belongs to the partial spec class if the specification con-
straint allows for multiple possible semantic solutions for the unkown functions. We say two functions
are semantically different if there exists some input for which they produce different outputs. For exam-
ple, the specification for the icfp 7 10 benchmark is partial as it is specified using a set of input-output
examples. The specification for the s8 benchmark shown above is also partial as it allows for multiple
possible functions f1, f2, and f3.

On the other hand, we say a benchmark belongs to the complete spec class if the complete functional
specification of the unknown function is provided. For example, consider the specification for the com-
piler optimization benchmark qm loop 1, where the constraint on the unknown function qm-loop fully
specifies the result of the function for every input.

(set-logic LIA)

(define-fun qm ((a Int) (b Int)) Int (ite (< a 0) b a))

(synth-fun qm-loop ((x Int)) Int

((Start Int (x 0 1 3

(- Start Start)

(+ Start Start)

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 13

(qm Start Start)))))

(declare-var x Int)

(constraint (= (qm-loop x) (ite (<= x 0) 3 (- x 1))))

(check-synth)

Grammar Generality We divide the benchmarks into three categories based on the generality of the
grammars for the unknown functions. The restricted grammar class consists of benchmarks where the
grammars are restricted to only contain operators and variables that are strictly necessary for the unknown
function. The second class of grammar, semi-general grammar, consists of a few more choices for op-
erators and rules that might not be necessarily needed for synthesizing the unknown function. The third
class of grammar, general grammar, consists of a very general grammar that consists of all possible op-
erators and variables from a given theory. For example, consider the grammars for the hd-17-d0-prog
(restricted grammar), hd-17-d1-prog (semi-general), and hd-17-d5-prog (general grammar) bench-
marks where all the constraints are same except for the generality of the grammar. The benchmark
hd-17-prog is taken from the Hacker’s Delight book that needs to synthesize a bitvector function to
turn-off the rightmost contiguous string of 1 bits in the input bitvector x.

;; hd-17-d0-prog

(synth-fun f ((x (BitVec 32))) (BitVec 32)

((Start (BitVec 32) ((bvand Start Start)

(bvadd Start Start)

(bvsub Start Start)

(bvor Start Start)

x

#x00000001))))

;; hd-17-d1-prog

(synth-fun f ((x (BitVec 32))) (BitVec 32)

((Start (BitVec 32) ((bvand Start Start)

(bvadd Start Start)

(bvxor Start Start)

(bvsub Start Start)

(bvor Start Start)

(bvnot Start)

(bvneg Start)

x

#x00000001

#x00000000

#xFFFFFFFF))))

14 Results and Analysis of SyGuS-Comp’15

;; hd-17-d5-prog

(synth-fun f ((x (BitVec 32))) (BitVec 32)

((Start (BitVec 32) ((bvnot Start)

(bvxor Start Start)

(bvand Start Start)

(bvor Start Start)

(bvneg Start)

(bvadd Start Start)

(bvmul Start Start)

(bvudiv Start Start)

(bvurem Start Start)

(bvlshr Start Start)

(bvashr Start Start)

(bvshl Start Start)

(bvsdiv Start Start)

(bvsrem Start Start)

(bvsub Start Start)

x

#x0000001F

#x00000001

#x00000000

#xFFFFFFFF))))

The grammars for the unknown functions in the Conditional Linear Arithmetic (LIA) track and the
Invariant Synthesis (INV) track belong to the class of general grammars, where the following grammar
is used for all unknown functions in the benchmarks.

(synth-fun f ((x1 Int) ... (xn Int)) Int

((Start Int (StartInt))

(StartInt Int (x1 ... xn ConstantInt

(+ StartInt StartInt)

(- StartInt StartInt)

(* StartInt ConstantInt)

(* ConstantInt StartInt)

(div StartInt ConstantInt)

(mod StartInt ConstantInt)

(ite StartBool StartInt StartInt)))

(ConstantInt (Constant Int))

(StartBool Bool (true false

(and StartBool StartBool)

(or StartBool StartBool)

(=> StartBool StartBool)

(xor StartBool StartBool)

(xnor StartBool StartBool)

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 15

(nand StartBool StartBool)

(nor StartBool StartBool)

(iff StartBool StartBool)

(not StartBool)

(= StartBool StartBool)

(<= StartInt StartInt)

(= StartInt StartInt)

(>= StartInt StartInt)

(> StartInt StartInt)

(< StartInt StartInt)))))

3.3 Detailed Results

In the following section we show the results of the competition from the benchmark’s perspective. For a
given benchmark we would like to know: how many solvers solved it, what is the min and max time to
solve, what are the min and max size of the expressions produced, which solver solved the benchmark
the fastest, and which solver produced the smallest expression.

We represents the results per benchmarks in groups organized per tracks and categories. For in-
stance, Fig. 3 shows all benchmarks of the INV tracks (first half in the upper figure, and second half
in the lower figure). The black bars show the range of the time to solve among the different solvers in
psuedo logarithmic scale (as indicated on the upper part of the y-axis). Inspect for instance benchmark
anpf-new.sl. The black bar indicates that the fastest solver to solve it used between 10 to 30 second,
and the slowest did not solve it within the given time bound (3600 second). The black number above
the black bar indicates the exact number of seconds (floor-rounded to the nearest second) it took the
slowest solver to solve a benchmark (and ∞ if at least one solver exceeded the time bound). Thus, we
can see that the slowest solver to solve array-new.sl took 167 seconds to solve it. The white number
at the lower part of the bar indicates the time of the fastest solver to solve that benchmark. Thus, we can
see that the fastest solver to solve anpf-new.sl required 21 second to do so, and the fastest solver to
solve array-new.sl took less than a second. The colored squares/rectangles next to the lower part of
the black bar, indicate which solvers were the fastest to solve that benchmark (according to the solvers’
legend at the top). Here, fastest means in the same logarithmic scale as the absolute fastest solver. For in-
stance, we can see that ALCHEMIST-CS was the fastest to solve anpf-new.sl, that both ALCHEMIST-CS

and ICE-DT solved cegar-new.sl in less than a second, and that all solvers (ICE-DT,ALCHEMIST-CS,
and CVC4-1.5-SYGUS) solved dec-new.sl in less than a second.

Similarly, the gray bars indicate the range of expression sizes in psuedo logarithmic scales (as in-
dicated on the lower part of the y-axis), where the size of an expression is determined by the number
of nodes in its parse tree. The black number at the bottom of the gray bar indicates the exact size ex-
pression of the largest solution (or ∞ if it exceeded 1000), and the white number at the top of the gray
bar indicates the exact size expression of the smallest solution. The colored squares/rectangles next to
the upper part of the gray bar indicates which solvers (according to the legend) produced the smallest
expression (where smallest means in the same logarithmic scale as the absolute smallest expression). For
instance, for tacas.sl the smallest expression produced had size 7, the biggest expression had size 121,
and the solver which produced the smallest expression is CVC4-1.5-SYGUS. For treax1.sl all solvers
produced an expression of size smaller than 10, and the absolute value of the smallest expression was 7.

Finally, at the top of the figure above each benchmark there is a number indicating the number
of solvers that solved that benchmark. For instance, one solver solved anpf-new.sl, two solvers

16 Results and Analysis of SyGuS-Comp’15

a
n
fp

-n
e
w

.s
l

a
rr

a
y
-n

e
w

.s
l

ce
g
a
r1

-n
e
w

.s
l

ce
g
a
r1

_v
a
rs

-n
e
w

.s
l

ce
g
a
r2

-n
e
w

.s
l

ce
g
a
r2

_v
a
rs

-n
e
w

.s
l

cg
g
m

p
-n

e
w

.s
l

d
e
c-

n
e
w

.s
l

d
e
c_

si
m

p
l-

n
e
w

.s
l

d
e
c_

v
a
rs

-n
e
w

.s
l

e
x
1
1
-n

e
w

.s
l

e
x
1
1
_s

im
p
l-

n
e
w

.s
l

e
x
1
1
_v

a
rs

-n
e
w

.s
l

e
x
1
4
-n

e
w

.s
l

fi
g
1
-n

e
w

.s
l

fi
g
1
_v

a
rs

-n
e
w

.s
l

fi
g
9
.s

l

fi
g
9
_v

a
rs

.s
l

fo
rm

u
la

2
2
.s

l

fo
rm

u
la

2
5
.s

l

fo
rm

u
la

2
7
.s

l

in
c.

sl

in
c_

si
m

p
.s

l

in
c_

v
a
rs

.s
l

m
a
tr

ix
2
.s

l

m
a
tr

ix
2
_s

im
p
.s

l

su
m

1
.s

l

su
m

1
_v

a
rs

.s
l

su
m

3
.s

l

su
m

3
_v

a
rs

.s
l

su
m

4
.s

l

su
m

4
_s

im
p
.s

l

su
m

4
_v

a
rs

.s
l

ta
ca

s_
v
a
rs

.s
l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

∞

41

21

7

∞

9

∞

9

∞

29

∞

35

∞
745

7

∞ ∞ ∞

11 28

7

28

7 7

40

8

∞

13 12

7

12

7

∞

33

∞

31

∞

185

∞

3

21

7

21

7

∞ ∞ ∞

55

∞

47

27

7

27

7

∞

19

∞

53

∞

47

∞

49

∞

21

167

0

∞

0

∞

1

∞

1

∞

1

∞

383

1

∞

0

∞

0

∞

2

11

0

474

0 1

671

0

∞

9

12

0

286

0

∞

1

∞

2

∞

2

∞

2

9

0

454

0

∞

1

∞
3098

∞

1

∞

1

10

0

586

0

∞

2

∞

1

∞

1

∞

0

1 3 2 2 2 2 1 3 0 0 2 3 3 3 3 2 3 3 2 1 1 2 3 3 0 0 2 1 3 3 2 2 1 2

Invaraint Generation Track - Part 1

Alchemist CS CVC4-1.5 ICE DT

ta
ca

s.
sl

tr
e
a
x
1
.s

l

tr
e
x
1
_v

a
rs

.s
l

tr
e
x
3
.s

l

tr
e
x
3
_v

a
rs

.s
l

v
/a

n
fp

.s
l

v
/a

rr
a
y
.s

l

v
/a

rr
a
y
_s

im
p
.s

l

v
/a

rr
a
y
_v

a
rs

.s
l

v
/c

e
g
a
r1

.s
l

v
/c

e
g
a
r1

_v
a
rs

.s
l

v
/c

e
g
a
r2

.s
l

v
/c

e
g
a
r2

_v
a
rs

.s
l

v
/c

g
g
m

p
.s

l

v
/d

e
c.

sl

v
/d

e
c_

si
m

p
l.
sl

v
/d

e
c_

v
a
rs

.s
l

v
/e

x
1
1
.s

l

v
/e

x
1
1
_s

im
p
l.
sl

v
/e

x
1
1
_v

a
rs

.s
l

v
/e

x
1
4
.s

l

v
/e

x
1
4
_s

im
p
.s

l

v
/e

x
1
4
_v

a
rs

.s
l

v
/e

x
2
3
.s

l

v
/e

x
2
3
_v

a
rs

.s
l

v
/e

x
7
.s

l

v
/e

x
7
_v

a
rs

.s
l

v
/f

ig
1
.s

l

v
/f

ig
1
_v

a
rs

.s
l

v
/f

ig
3
.s

l

v
/f

ig
3
_v

a
rs

.s
l

v
se

n
d
.s

l

w
1
.s

l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

121

7 7 7

∞ ∞ ∞

59

21

7

21

7

∞

21

9

∞

8

∞

29

∞

35

∞

170

7

23

7

23

7

∞

11

∞

17

∞

7 7 7

∞

13

∞

17

7

17

7

23

8

∞

13

∞

27

∞

27

7 9

1864

0 1 1

∞

0

∞

0

∞

13

51

0

148

0

∞

1

711

0

∞

0

∞

1

∞

1

∞

1

1

14

0

1653

0

∞

0

∞

0

∞

736

1 1 1

∞

2

∞

0

65

0

2222

0

675

0

∞

1

∞

1

∞

1 1 1

3 3 3 0 0 1 3 3 2 3 2 2 2 2 3 3 3 2 2 0 3 3 3 1 0 3 3 3 2 2 2 3 3

Invaraint Generation Track - Part 2

Alchemist CS CVC4-1.5 ICE DT

Figure 3: Evaluation of INV benchmarks.

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 17

solved cegar-new.sl, three solvers solved array-new.sl, and no solver solved matrix2.sl or
matrix2-simp.sl. Note that the reason matrix2.sl has 1 as the lower time bound, is that that is
the time to terminate rather than the time to solve. Thus, one of the solvers has terminated within less
than 1 second, but either it did not produce a result, or it produced an incorrect result. When no solver
produced a correct result, there will be no colored squares/rectangles next to the lower parts of the bars.

Figures 3-11 presents the results of each benchmark in the competition. The results are organized
per category. The results for ICFP category are not included, since only one benchmark was solved. This
benchmark is the icfp 28 10.sl benchmark, it was solved by CVC4-1.5-SYGUS and SOSYTOAST, in
both configurations. The two solvers (in the overall three configurations) terminated in less than two
seconds, producing an expression of size two. It seems that the solvers find it difficult to handle the
benchmarks in this category since the specification constraints are too partial.

3.4 Observations

Correlating the number of instances solved by the different solvers (as depicted in Fig. 2) and the features
a certain category has (as detailed in Table. 3.2) the following observations can be made:

• The CVC4-1.5-SYGUS solver preforms best on benchmarks with single invocation and a single
unknown.

• The ICE-DT solver, designated to solve invariant synthesis problems, does best on invariant syn-
thesis problems, which are multiple invocation.

• The ENUMERATIVE and STOCHASTIC solver preform well on multiple invocation problems (of
the general track).

• The SKETCH-AC solver preforms well on benchmarks with a restricted grammar.

We note that we have tested the solvers submitted to the general track on the instances of the INV
and LIA track translated to general SyGuS. None of them solved any of those instances. For most
of the solvers the problem seemed to be lack of support for arbitrary constants — the translation to
general SyGuS included the grammar term (Constant Int) which allows any integer to appear in the
specification, and the solvers for the general track that mostly build on guiding the search according
to the syntactic structure do not support this construct. The reason CVC4-1.5-SYGUS failed on these
benchmarks is that it wasn’t designed to support the less common Boolean connectives such as nand and
xnor that the translation to general SyGuS allowed in order to be as permissive as possible. For next
year’s competition we plan to test the general solvers on a restricted, yet general, subset of LIA, e.g. one
consisting of just zero and one as constants and a small subset of the Boolean operators from which the
others can be derived (e.g. and, or, and not).

With regard to size expressions we note that the ENUMERATIVE solver by definition always produces
the smallest expression. Inspecting figures 3-11 we observe that in many cases most solvers produced
expressions of relatively the same size. Though the CVC4-1.5-SYGUS solver often produces very large
expressions. For instance, on the array search 7.s benchmark, in which SKETCH-AC produced an ex-
pression of size 31, CVC4-1.5-SYGUS’s expression was of size 3,311, and on the LinExpr inv1 ex.sl,
in which both ENUMERATIVE and SKETCH-AC produced an expression of size 14, STOCHASTIC pro-
duced an expression of size 42, CVC4-1.5-SYGUS produced an expression of size 4,022. The largest
expression produced was for benchmark array search 15.sl. Its size is 1,843,271. It is the solution
of CVC4-1.5-SYGUS which is the only solver to solve this benchmark.

18 Results and Analysis of SyGuS-Comp’15

fg
_a

rr
a
y
_s

e
a
rc

h
_1

0
.s

l

fg
_a

rr
a
y
_s

e
a
rc

h
_1

1
.s

l

fg
_a

rr
a
y
_s

e
a
rc

h
_1

2
.s

l

fg
_a

rr
a
y
_s

e
a
rc

h
_1

3
.s

l

fg
_a

rr
a
y
_s

e
a
rc

h
_1

4
.s

l

fg
_a

rr
a
y
_s

e
a
rc

h
_1

5
.s

l

fg
_a

rr
a
y
_s

e
a
rc

h
_2

.s
l

fg
_a

rr
a
y
_s

e
a
rc

h
_3

.s
l

fg
_a

rr
a
y
_s

e
a
rc

h
_4

.s
l

fg
_a

rr
a
y
_s

e
a
rc

h
_5

.s
l

fg
_a

rr
a
y
_s

e
a
rc

h
_6

.s
l

fg
_a

rr
a
y
_s

e
a
rc

h
_7

.s
l

fg
_a

rr
a
y
_s

e
a
rc

h
_8

.s
l

fg
_a

rr
a
y
_s

e
a
rc

h
_9

.s
l

fg
_a

rr
a
y
_s

u
m

_1
0
_1

5
.s

l

fg
_a

rr
a
y
_s

u
m

_1
0

_5
.s

l

fg
_a

rr
a
y
_s

u
m

_2
_1

5
.s

l

fg
_a

rr
a
y
_s

u
m

_2
_5

.s
l

fg
_a

rr
a
y
_s

u
m

_3
_1

5
.s

l

fg
_a

rr
a
y
_s

u
m

_3
_5

.s
l

fg
_a

rr
a
y
_s

u
m

_4
_1

5
.s

l

fg
_a

rr
a
y
_s

u
m

_4
_5

.s
l

fg
_a

rr
a
y
_s

u
m

_5
_1

5
.s

l

fg
_a

rr
a
y
_s

u
m

_6
_1

5
.s

l

fg
_a

rr
a
y
_s

u
m

_6
_5

.s
l

fg
_a

rr
a
y
_s

u
m

_7
_1

5
.s

l

fg
_a

rr
a
y
_s

u
m

_7
_5

.s
l

fg
_a

rr
a
y
_s

u
m

_8
_1

5
.s

l

fg
_a

rr
a
y
_s

u
m

_8
_5

.s
l

fg
_a

rr
a
y
_s

u
m

_9
_1

5
.s

l

fg
_a

rr
a
y
_s

u
m

_9
_5

.s
l

fg
_e

ig
h
tf

u
n
cs

.s
l

fg
_f

iv
e
fu

n
cs

.s
l

fg
_m

a
x
1
0

.s
l

fg
_m

a
x
1
1

.s
l

fg
_m

a
x
1
2

.s
l

fg
_m

a
x
1
3

.s
l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

∞ ∞ ∞ ∞ ∞ ∞

53

21

109

31

∞

41

∞

51

∞

61

∞

71

∞

81

∞

91

∞ ∞

16 11

57

19

57

19

∞

28

∞

28

∞
369

∞
678

∞
678

∞ ∞ ∞ ∞ ∞ ∞

30

24

8

∞
781

∞
958

∞ ∞

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0 1

11

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0 0 0

2671

0

17

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

4

0 0

∞

1

∞

1

∞

2

∞

3

1 1 1 1 1 1 3 3 3 2 2 2 2 2 1 1 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1

Linear Integer Arithmetic Track - Part 1

Alchemist CS Alchemist CS DT CVC4-1.5

fg
_V

C
2
2
_a

.s
l

fg
_V

C
2
2
_b

.s
l

fg
_m

a
x
1
4
.s

l

fg
_m

a
x
1
5
.s

l

fg
_m

a
x
2
.s

l

fg
_m

a
x
3
.s

l

fg
_m

a
x
4
.s

l

fg
_m

a
x
5
.s

l

fg
_m

a
x
6
.s

l

fg
_m

a
x
7
.s

l

fg
_m

a
x
8
.s

l

fg
_m

a
x
9
.s

l

fg
_m

p
g
_e

x
a
m

p
le

1
.s

l

fg
_m

p
g
_e

x
a
m

p
le

2
.s

l

fg
_m

p
g
_e

x
a
m

p
le

3
.s

l

fg
_m

p
g
_e

x
a
m

p
le

4
.s

l

fg
_m

p
g
_e

x
a
m

p
le

5
.s

l

fg
_m

p
g
_g

u
a
rd

1
.s

l

fg
_m

p
g
_g

u
a
rd

2
.s

l

fg
_m

p
g
_g

u
a
rd

3
.s

l

fg
_m

p
g
_g

u
a
rd

4
.s

l

fg
_m

p
g
_i

te
1
.s

l

fg
_m

p
g
_i

te
2
.s

l

fg
_m

p
g
_p

la
n
e
1
.s

l

fg
_m

p
g
_p

la
n
e
2
.s

l

fg
_m

p
g
_p

la
n
e
3
.s

l

fg
_n

in
e
fu

n
cs

.s
l

fg
_p

o
ly

n
o
m

ia
l.
sl

fg
_p

o
ly

n
o
m

ia
l1

.s
l

fg
_p

o
ly

n
o
m

ia
l2

.s
l

fg
_p

o
ly

n
o
m

ia
l3

.s
l

fg
_p

o
ly

n
o
m

ia
l4

.s
l

fg
_s

e
v
e
n
fu

n
cs

.s
l

fg
_s

ix
fu

n
cs

.s
l

fg
_t

e
n
fu

n
c1

.s
l

fg
_t

e
n
fu

n
c2

.s
l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

49

10

∞ ∞ ∞

11

42

∞

71

∞

151

∞

242

∞
346

∞
471

∞
616

38

21

∞

219

391

84

∞
505

∞

131

24 28

34

20

37

23

77

21

105

36

3

11 11

31

2 4 7 5

14 19 18

∞

36

∞

36

1890

7

∞ ∞

5

∞

7

0

4

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0 0

∞

0

27

0

∞

0

59

0 1 0 1 1

2

0 1 0 0 0

33

0 0 0 0 0 0

2

0

2

0

∞

0

∞

0

2 0 1 1 3 3 2 2 2 2 2 1 3 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2

Linear Integer Arithmetic Track - Part 2

Alchemist CS Alchemist CS DT CVC4-1.5

Figure 4: Evaluation of LIA benchmarks.

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 19

a
rr

a
y
_s

e
a
rc

h
_1

0
.s

l

a
rr

a
y
_s

e
a
rc

h
_1

1
.s

l

a
rr

a
y
_s

e
a
rc

h
_1

2
.s

l

a
rr

a
y
_s

e
a
rc

h
_1

3
.s

l

a
rr

a
y
_s

e
a
rc

h
_1

4
.s

l

a
rr

a
y
_s

e
a
rc

h
_1

5
.s

l

a
rr

a
y
_s

e
a
rc

h
_2

.s
l

a
rr

a
y
_s

e
a
rc

h
_3

.s
l

a
rr

a
y
_s

e
a
rc

h
_4

.s
l

a
rr

a
y
_s

e
a
rc

h
_5

.s
l

a
rr

a
y
_s

e
a
rc

h
_6

.s
l

a
rr

a
y
_s

e
a
rc

h
_7

.s
l

a
rr

a
y
_s

e
a
rc

h
_8

.s
l

a
rr

a
y
_s

e
a
rc

h
_9

.s
l

a
rr

a
y
_s

u
m

_1
0
_1

5
.s

l

a
rr

a
y
_s

u
m

_1
0
_5

.s
l

a
rr

a
y
_s

u
m

_2
_1

5
.s

l

a
rr

a
y
_s

u
m

_2
_5

.s
l

a
rr

a
y
_s

u
m

_3
_1

5
.s

l

a
rr

a
y
_s

u
m

_3
_5

.s
l

a
rr

a
y
_s

u
m

_4
_1

5
.s

l

a
rr

a
y
_s

u
m

_4
_5

.s
l

a
rr

a
y
_s

u
m

_5
_1

5
.s

l

a
rr

a
y
_s

u
m

_6
_1

5
.s

l

a
rr

a
y
_s

u
m

_6
_5

.s
l

a
rr

a
y
_s

u
m

_7
_1

5
.s

l

a
rr

a
y
_s

u
m

_7
_5

.s
l

a
rr

a
y
_s

u
m

_8
_1

5
.s

l

a
rr

a
y
_s

u
m

_8
_5

.s
l

a
rr

a
y
_s

u
m

_9
_1

5
.s

l

a
rr

a
y
_s

u
m

_9
_5

.s
l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

∞ ∞ ∞ ∞ ∞ ∞ ∞

11

∞

16

∞

21

∞

31

∞

31

∞

36

∞

56

∞ ∞ ∞ ∞

24

∞

14

∞

109

∞

30

∞

189

∞

173

∞
833

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞

0

∞

1

∞

1

∞

3

∞

7

∞

12

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

17

∞

17

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

1

∞

1

∞

4

∞

4

1 1 1 1 1 1 4 3 2 2 2 2 1 1 1 1 2 3 1 2 1 1 1 1 1 1 1 1 1 1 1

Arrays Category

CVC4-1.5 Enumerative Sketch-AC SosyToast Stochastic

Figure 5: Evaluation of Arrays benchmarks.

B
it

V
e
ct

o
rs

/p
a
ri

ty
-A

IG
-d

0
.s

l

B
it

V
e
ct

o
rs

/p
a
ri

ty
-A

IG
-d

1
.s

l

B
it

V
e
ct

o
rs

/p
a
ri

ty
-N

A
N

D
-d

0
.s

l

B
it

V
e
ct

o
rs

/p
a
ri

ty
-N

A
N

D
-d

1
.s

l

B
it

V
e
ct

o
rs

/p
a
ri

ty
.s

l

C
o
m

p
O

p
ts

/q
m

_a
re

a
_s

e
l_

2
.s

l

C
o
m

p
O

p
ts

/q
m

_c
h
o
o
se

_0
1
.s

l

C
o
m

p
O

p
ts

/q
m

_c
h
o
o
se

_y
z.

sl

C
o
m

p
O

p
ts

/q
m

_i
n
_r

a
n
g
e
.s

l

C
o
m

p
O

p
ts

/q
m

_l
o
o
p
_1

.s
l

C
o
m

p
O

p
ts

/q
m

_l
o
o
p
_2

.s
l

C
o
m

p
O

p
ts

/q
m

_l
o
o
p
_3

.s
l

C
o
m

p
O

p
ts

/q
m

_m
a
x
2
.s

l

C
o
m

p
O

p
ts

/q
m

_m
a
x
3
.s

l

C
o
m

p
O

p
ts

/q
m

_m
a
x
4
.s

l

C
o
m

p
O

p
ts

/q
m

_m
a
x
5
.s

l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_1

.s
l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_2

.s
l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_3

.s
l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_4

.s
l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_5

.s
l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_e

q
_1

.s
l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_e

q
_2

.s
l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_e

q
_3

.s
l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_e

q
_4

.s
l

C
o
m

p
O

p
ts

/q
m

_n
e
g
_e

q
_5

.s
l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

∞

24

∞

56

∞

34

∞

106

∞ ∞ ∞

7

∞

11

∞ ∞

5

∞

9

∞

11

∞

7

∞

13

∞ ∞ ∞

7

∞

11

∞

13

∞ ∞ ∞

7

∞

11

∞ ∞ ∞

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

1

∞

1

∞

0

∞

0

∞

3

∞

0

∞

1

∞

1

∞

1

∞

0

∞

0

∞

1

∞

1

∞

4

∞

0

∞

1

∞

1

∞

1

∞

1

2 1 2 1 0 0 3 2 0 3 2 1 3 2 0 0 3 1 2 0 0 3 1 0 0 0

Compiler Optimizations and Bitvectors Category

CVC4-1.5 Enumerative Sketch-AC SosyToast Stochastic

Figure 6: Evaluation of Compiler Optimization and Bitvectors benchmarks.

20 Results and Analysis of SyGuS-Comp’15

Le
t/

lo
g
co

u
n
t-

d
1
.s

l

Le
t/

lo
g
co

u
n
t-

d
5
.s

l

Le
t/

lo
g
co

u
n
t.

sl

Le
t/

lo
g
co

u
n
t2

-d
1
.s

l

Le
t/

lo
g
co

u
n
t2

-d
5
.s

l

Le
t/

lo
g
co

u
n
t2

.s
l

Le
t/

tw
o
le

ts
1
.s

l

Le
t/

tw
o
le

ts
1
0
.s

l

Le
t/

tw
o
le

ts
3
.s

l

Le
t/

tw
o
le

ts
4
.s

l

Le
t/

tw
o
le

ts
5
.s

l

Le
t/

tw
o
le

ts
6
.s

l

Le
t/

tw
o
le

ts
7
.s

l

Le
t/

tw
o
le

ts
8
.s

l

Le
t/

tw
o
le

ts
9
.s

l

M
o
tP

la
n
/m

p
g
L_

d
1
s3

.s
l

M
o
tP

la
n
/m

p
g
L_

d
1
s7

.s
l

M
o
tP

la
n
/m

p
g
L_

d
4
s3

.s
l

M
o
tP

la
n
/m

p
g
L_

d
4
s7

.s
l

M
o
tP

la
n
/m

p
g
L_

d
5
s3

.s
l

M
o
tP

la
n
/m

p
g
L_

d
5
s7

.s
l

M
o
tP

la
n
/m

p
g
o
L_

d
1
s3

.s
l

M
o
tP

la
n
/m

p
g
o
L_

d
1
s7

.s
l

M
o
tP

la
n
/m

p
g
o
L_

d
4
s3

.s
l

M
o
tP

la
n
/m

p
g
o
L_

d
4
s7

.s
l

M
o
tP

la
n
/m

p
g
o
L_

d
5
s3

.s
l

M
o
tP

la
n
/m

p
g
o
L_

d
5
s7

.s
l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600
w

a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

∞ ∞ ∞ ∞ ∞ ∞ ∞

16

∞ ∞

22

∞

28

∞ ∞ ∞ ∞ ∞ ∞

1

∞

1

∞

1

∞

7

∞

1

∞ ∞

1

∞

1

∞

7

∞

7

∞

13

∞

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

25

∞

0

∞

0

∞

11

∞

15

∞

18

∞

20

∞

19

45

0

∞

0

345

1

∞

1

∞

1

∞

1

∞

0

∞

0

∞

0

∞

2

∞

2

∞

2

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 2 1 2 1 1 0 3 1 3 1 1 0

Let and Motion Planning Category

CVC4-1.5 Enumerative Sketch-AC SosyToast Stochastic

Figure 7: Evaluation of Let and Motion Planning benchmarks.

4 Discussion

The syntax-guided synthesis competition of this year (SyGuS-Comp’15) added two special tracks, above
the general track of last year’s competition: The LIA track where the background theory is conditional
linear integer arithmetic and no grammar is given, instead the grammar is implicitly assumed to be that
of the LIA logic of SMT-LIB; and the INV track (also using LIA and no syntactic constraints) consisting
of invariant synthesis problems and using special constructs that convey the structure of an invariant
synthesis problem.

A total of eight solvers were submitted to this year’s competition. On the LIA and INV tracks
competed three solvers (with an overlap of two), and in the general track competed five solvers in seven
configurations. The winner of the LIA track and general track was the CVC4-1.5-SYGUS solver [14],
which is the only solver to participate in all tracks and the first solver to implement a syntax-guided
synthesis engine inside an SMT solver. The winner of the INV track was the ICE-DT solver [11], a
special solver for invariant synthesis problems.

We classified the benchmarks participating in the competition into several categories and analyzed
the features a certain category has or has not. Correlating the results with the features we observe that
CVC4-1.5-SYGUS preforms best on benchmarks where there is a single function to be synthesized,
and that function is always invoked using the same set of parameters. On benchmarks with multiple
functions to synthesize or in which functions are invoked with different parameters, the ENUMERATIVE

and STOCHASTIC solver (which won first and second place in last year’s competition) seem to preform
better.

We hope this report sheds some light on the correlations of solver’s performance and benchmark
features, and can be of help to improve the development of future solvers. In next year’s competition we
are considering devoting a track to benchmarks where obtaining a small expression is more crucial than
obtaining it fast, as is the case for instance, in compiler optimization problems.

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 21

in
v
_g

e
n
_a

rr
a
y
.s

l

in
v
_g

e
n
_c

e
g
a
r2

.s
l

in
v
_g

e
n
_c

g
r1

.s
l

in
v
_g

e
n
_e

x
1
4
.s

l

in
v
_g

e
n
_e

x
2
3
.s

l

in
v
_g

e
n
_e

x
7
.s

l

in
v
_g

e
n
_f

ig
1
.s

l

in
v
_g

e
n
_f

ig
3
.s

l

in
v
_g

e
n
_f

ig
6
.s

l

in
v
_g

e
n
_f

ig
8
.s

l

in
v
_g

e
n
_f

ig
9
.s

l

in
v
_g

e
n
_f

in
f1

.s
l

in
v
_g

e
n
_f

in
f2

.s
l

in
v
_g

e
n
_n

_c
1
1
.s

l

in
v
_g

e
n
_s

u
m

1
.s

l

in
v
_g

e
n
_s

u
m

3
.s

l

in
v
_g

e
n
_s

u
m

4
.s

l

in
v
_g

e
n
_t

cs
.s

l

in
v
_g

e
n
_t

e
rm

2
.s

l

in
v
_g

e
n
_t

e
rm

3
.s

l

in
v
_g

e
n
_t

re
x
1
.s

l

in
v
_g

e
n
_t

re
x
2
.s

l

in
v
_g

e
n
_t

re
x
4
.s

l

in
v
_g

e
n
_v

m
a
il.

sl

in
v
_g

e
n
_w

1
.s

l

in
v
_g

e
n
_w

2
.s

l

in
v
_g

e
n
_w

in
f1

.s
l

in
v
_g

e
n
_w

in
f2

.s
l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

19

∞

2

∞

5

∞

0

1960

0

∞

3

∞

0

∞

0

∞

0

13

0

∞

0

146

0

∞

0

304

0

∞

0

∞

14

∞

0

∞

2

∞

4

135

0

74

0

2425

0

4

0

234

0

897

0

400

0

∞

0

12

0

7

0

2 0 3 4 1 2 2 3 3 2 3 2 3 2 0 2 2 0 3 3 3 3 3 3 4 2 3 3

Invaraint Generation with Bounded Integers

CVC4-1.5 Enumerative Sketch-AC SosyToast Stochastic

u
n
b
d
d
_i

n
v
_g

e
n
_a

rr
a
y
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_c

e
g
a
r2

.s
l

u
n
b
d
d
_i

n
v
_g

e
n
_c

g
r1

.s
l

u
n
b
d
d
_i

n
v
_g

e
n
_e

x
1
4
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_e

x
2
3
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_e

x
7
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_f

ig
1
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_f

ig
3
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_f

ig
6
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_f

ig
8
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_f

ig
9
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_f

in
f1

.s
l

u
n
b
d
d
_i

n
v
_g

e
n
_f

in
f2

.s
l

u
n
b
d
d
_i

n
v
_g

e
n
_n

_c
1
1
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_s

u
m

1
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_s

u
m

3
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_s

u
m

4
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_t

cs
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_t

e
rm

2
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_t

e
rm

3
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_t

re
x
1
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_t

re
x
2
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_t

re
x
4
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_v

m
a
il.

sl

u
n
b
d
d
_i

n
v
_g

e
n
_w

1
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_w

2
.s

l

u
n
b
d
d
_i

n
v
_g

e
n
_w

in
f1

.s
l

u
n
b
d
d
_i

n
v
_g

e
n
_w

in
f2

.s
l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

∞

19

∞

23

31

21 23

∞

19 23

∞

19 23 19 19 25 25 19

∞

19

∞

23 19

∞

19

∞

21 27 21

∞

21 19 21 25 19 25 19 19

∞

0

∞

5

2678

0

1838

0

∞

3

1083

0

∞

0

1045

0

4

0

5

0

281

0

214

0

104

0

∞

0

∞

5

466

0

∞

5

∞

5

33

0

7

0

∞

0

5

0

61

0

14

0

153

0

1178

0

13

0

4

0

4 0 4 5 1 4 2 5 4 5 4 5 5 3 0 5 2 0 4 5 3 5 4 4 5 5 4 4

Invaraint Generation with Unbounded Integers

CVC4-1.5 Enumerative Sketch-AC SosyToast Stochastic

Figure 8: Evaluation of Invariant Generations with/without unbounded integers benchmarks. (These are
benchmarks from the general track.)

22 Results and Analysis of SyGuS-Comp’15

h
d
-0

1
-d

1
-p

ro
g
.s

l

h
d
-0

1
-d

5
-p

ro
g
.s

l

h
d
-0

2
-d

0
-p

ro
g
.s

l

h
d
-0

2
-d

1
-p

ro
g
.s

l

h
d
-0

2
-d

5
-p

ro
g
.s

l

h
d
-0

3
-d

0
-p

ro
g
.s

l

h
d
-0

3
-d

1
-p

ro
g
.s

l

h
d
-0

3
-d

5
-p

ro
g
.s

l

h
d
-0

4
-d

0
-p

ro
g
.s

l

h
d
-0

4
-d

1
-p

ro
g
.s

l

h
d
-0

4
-d

5
-p

ro
g
.s

l

h
d
-0

5
-d

0
-p

ro
g
.s

l

h
d
-0

5
-d

1
-p

ro
g
.s

l

h
d
-0

5
-d

5
-p

ro
g
.s

l

h
d
-0

6
-d

0
-p

ro
g
.s

l

h
d
-0

6
-d

1
-p

ro
g
.s

l

h
d
-0

6
-d

5
-p

ro
g
.s

l

h
d
-0

7
-d

0
-p

ro
g
.s

l

h
d
-0

7
-d

1
-p

ro
g
.s

l

h
d
-0

7
-d

5
-p

ro
g
.s

l

h
d
-0

8
-d

0
-p

ro
g
.s

l

h
d
-0

8
-d

1
-p

ro
g
.s

l

h
d
-0

8
-d

5
-p

ro
g
.s

l

h
d
-0

9
-d

0
-p

ro
g
.s

l

h
d
-0

9
-d

1
-p

ro
g
.s

l

h
d
-0

9
-d

5
-p

ro
g
.s

l

h
d
-1

3
-d

0
-p

ro
g
.s

l

h
d
-1

3
-d

1
-p

ro
g
.s

l

h
d
-1

3
-d

5
-p

ro
g
.s

l

h
d
-1

4
-d

0
-p

ro
g
.s

l

h
d
-1

4
-d

1
-p

ro
g
.s

l

h
d
-1

4
-d

5
-p

ro
g
.s

l

h
d
-1

5
-d

0
-p

ro
g
.s

l

h
d
-1

5
-d

1
-p

ro
g
.s

l

h
d
-1

5
-d

5
-p

ro
g
.s

l

h
d
-1

7
-d

0
-p

ro
g
.s

l

h
d
-1

7
-d

1
-p

ro
g
.s

l

h
d
-1

7
-d

5
-p

ro
g
.s

l

h
d
-1

9
-d

0
-p

ro
g
.s

l

h
d
-1

9
-d

1
-p

ro
g
.s

l

h
d
-1

9
-d

5
-p

ro
g
.s

l

h
d
-2

0
-d

0
-p

ro
g
.s

l

h
d
-2

0
-d

1
-p

ro
g
.s

l

h
d
-2

0
-d

5
-p

ro
g
.s

l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

5

14

5 5 7 7 4 6 5 5 5 5 5 7 7 5 5 6 9 9 9 6 9

10

5

15

9

∞

9

∞

7

17

8

∞

8

∞

8

∞

9

∞

9

∞

9

∞

9

∞

9

∞

9

11

9

∞

8

∞

8

∞

19

∞

19

∞

19

∞

37

∞ ∞

10

0

44

0

8

0

6

0

43

0

3

0

4

0

10

0

3

0

6

0

42

0

3

0

9

0

42

0

3

0

15

0

42

0

7

0

92

0

1062

0

12

0

12

0

59

0

2226

0

∞

0

∞

0

439

0

∞

0

∞

0

∞

0

∞

11

∞

79

∞

0

∞

3

∞

97

358

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

70

∞

61

∞

276

4 5 4 4 5 4 2 2 3 2 2 4 1 5 4 3 2 1 1 0 0 0

Hackers Delight Category

CVC4-1.5 Enumerative Sketch-AC SosyToast Stochastic

Figure 9: Evaluation of Hacker’s Delight benchmarks.

Li
n
E
x
p
r_

e
q
1
e
x
.s

l

Li
n
E
x
p
r_

e
q
2
e
x
.s

l

Li
n
E
x
p
r_

in
v
1
.s

l

Li
n
E
x
p
r_

in
v
1
_e

x
.s

l

co
m

m
u
ta

ti
v
e
.s

l

co
n
st

a
n
t.

sl

m
a
x
1
0
.s

l

m
a
x
1
1
.s

l

m
a
x
1
2
.s

l

m
a
x
1
3
.s

l

m
a
x
1
4
.s

l

m
a
x
1
5
.s

l

m
a
x
2
.s

l

m
a
x
3
.s

l

m
a
x
4
.s

l

m
a
x
5
.s

l

m
a
x
6
.s

l

m
a
x
7
.s

l

m
a
x
8
.s

l

m
a
x
9
.s

l

m
p
g
_e

x
a
m

p
le

1
.s

l

m
p
g
_e

x
a
m

p
le

2
.s

l

m
p
g
_e

x
a
m

p
le

3
.s

l

m
p
g
_e

x
a
m

p
le

4
.s

l

m
p
g
_e

x
a
m

p
le

5
.s

l

m
p
g
_g

u
a
rd

1
.s

l

m
p
g
_g

u
a
rd

2
.s

l

m
p
g
_g

u
a
rd

3
.s

l

m
p
g
_g

u
a
rd

4
.s

l

m
p
g
_i

te
1
.s

l

m
p
g
_i

te
2
.s

l

m
p
g
_p

la
n
e
1
.s

l

m
p
g
_p

la
n
e
2
.s

l

m
p
g
_p

la
n
e
3
.s

l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600

w
a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

∞ ∞ ∞

10

∞

14

3 1

∞
460

∞
552

∞
673

∞
808

∞
957

∞

6

∞

15

∞

55

∞

93

∞

139

∞

196

∞

270

∞
358

∞

127

∞

259

∞ ∞ ∞ ∞

12

∞

14

∞

16

∞

33

∞

45

∞

105

∞

3

∞

17

∞

29

∞

0

∞

0

∞

1

∞

0

4

0

6

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

28

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

4

0

∞

0

∞

0

1 1 4 4 5 5 1 1 1 1 1 1 5 4 2 1 1 1 1 1 1 1 1 1 1 3 3 3 2 2 2 4 3 2

Integers Category

CVC4-1.5 Enumerative Sketch-AC SosyToast Stochastic

Figure 10: Evaluation of Integers benchmarks.

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 23

e
ig

h
tf

u
n
cs

.s
l

fG
e
n
e
ra

l_
p
lu

s1
0
.s

l

fi
v
e
fu

n
cs

-c
o
p
y
.s

l

fi
v
e
fu

n
cs

.s
l

n
in

e
fu

n
cs

.s
l

p
o
ly

n
o
m

ia
l.
sl

p
o
ly

n
o
m

ia
l1

.s
l

p
o
ly

n
o
m

ia
l2

.s
l

p
o
ly

n
o
m

ia
l3

.s
l

p
o
ly

n
o
m

ia
l4

.s
l

s0
.s

l

s0
_d

0
.s

l

s0
_d

1
.s

l

s0
_d

2
.s

l

s1
.s

l

s1
0
.s

l

s1
1
.s

l

s1
2
.s

l

s2
.s

l

s3
.s

l

s4
.s

l

s5
.s

l

s6
.s

l

s7
.s

l

s8
.s

l

s9
.s

l

se
v
e
n
_c

1
.s

l

se
v
e
n
_c

2
.s

l

se
v
e
n
_c

3
.s

l

se
v
e
n
_c

4
.s

l

se
v
e
n
_t

h
re

e
_d

0
.s

l

se
v
e
n
_t

h
re

e
_d

1
.s

l

se
v
e
n
fu

n
cs

.s
l

si
x
fu

n
cs

.s
l

te
n
fu

n
c1

.s
l

te
n
fu

n
c2

.s
l

th
re

e
.s

l

th
re

e
_d

0
.s

l

th
re

e
_d

1
.s

l

th
re

e
_d

2
.s

l

th
re

e
_d

3
.s

l

benchmarks

>1000

[300,1000)

[100,300)

[30,100)

[10,30)

[1,10)

0

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[1,10)

[10,30)

[30,100)

[100,300)

[300,1000)

>1000

[0,1)

[1,3)

[3,10)

[10,30)

[30,100)

[100,300)

[300,1000)

[1000,3600)

>3600
w

a
ll
c
lo

c
k
-t

im
e

e
x
p

r-
s
iz

e

∞ ∞ ∞

27

∞ ∞ ∞

2

∞

2

∞

4

∞

4

∞

8

∞ ∞ ∞ ∞ ∞ ∞

7

∞ ∞

6 1

∞

3

∞

9

∞ ∞

9

∞ ∞

7

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

26

∞ ∞ ∞ ∞ ∞ ∞ ∞

∞

61

4

0

∞

13

∞

6

∞

59

∞

0

∞

0

∞

0

∞

0

∞

0

∞ ∞ ∞ ∞ ∞ ∞

0

∞

23

∞

0

2

0

2

0

∞

0

∞

0

∞

17

∞

0

∞

16

∞

0

5

0

5

0

5

0

5

0

1

0

1

0

∞

22

∞

2

∞

25

∞

25

5

0

5

0

17

0

5

0

5

0

0 0 1 0 0 4 4 4 4 4 0 0 0 0 0 4 0 0 5 5 4 4 0 4 0 4 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

Multiple Functions Category

CVC4-1.5 Enumerative Sketch-AC SosyToast Stochastic

Figure 11: Evaluation of the Multiple Functions benchmarks.

Acknowledgments

We would like to thank the following people for various interesting discussions related to the competition,
its tracks, the SyGuS format and various other topics related to syntax-guided synthesis: Sarah Chasins,
Ruediger Ehlers, Pranav Garg, Viktor Kuncak, P. Madhusudan, Ken McMillan, Daniel Neider, Nissim
Ofek, Arjun Radhakrishna, Mukund Raghothama, Andrew Reynolds, Heinz Riener, Shambwaditya Saha
and Abhishek Udupa.

We would like to thanks the StarExec team, and especially Aaron Stump, for allowing us to use their
platform and for their remarkable support for SyGuS-Comp’s special needs.

This research was supported by US NSF grant CCF-1138996 (ExCAPE).

References
[1] Rajeev Alur, Rastislav Bodı́k, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas Kress-Gazit,

P. Madhusudan, Milo M. K. Martin, Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak & Abhishek Udupa (2015): Syntax-Guided Synthesis. In:
Dependable Software Systems Engineering, 40, IOS Press, pp. 1–25.

[2] Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak & Abhishek Udupa (2013): Syntax-guided synthesis.
In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013,
pp. 1–8.

[3] Rajeev Alur, Pavol Cerný & Arjun Radhakrishna (2015): Synthesis Through Unification. In: Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II, pp. 163–179.

[4] Rajeev Alur, Pavol Cerný & Arjun Radhakrishna (2015): Synthesis Through Unification. In: Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II, pp. 163–179.

[5] David R. Cok (2013): The SMT-LIBv2 Language and Tools: A Tutorial.

24 Results and Analysis of SyGuS-Comp’15

[6] Pranav Garg, Christof Löding, P. Madhusudan & Daniel Neider (2014): ICE: A Robust Framework for
Learning Invariants. In: Computer Aided Verification - 26th International Conference, CAV 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pp. 69–87.

[7] Pranav Garg, Daniel Neider, P. Madhusudan, & Dan Roth (2015): Learning Invariants using Decision Trees
and Implication Counterexamples. Technical report.

[8] Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama & Jeffrey S. Foster (2015): Adaptive Concretization
for Parallel Program Synthesis. In: Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, pp. 377–394.

[9] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia & Ashish Tiwari (2010): Oracle-guided Component-based Pro-
gram Synthesis. In: Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE ’10, pp. 215–224.

[10] Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang & Daniel Jackson (2015): Alloy*: A General-Purpose
Higher-Order Relational Constraint Solver. In: 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pp. 609–619.

[11] Daniel Neider, P. Madhusudan & Pranav Garg (2015): ICE DT: Learning Invariants using Decision Trees
and Implication Counterexamples. Private Communication.

[12] Daniel Neider, Shambwaditya Saha & P. Madhusudan (2015): Alchemist CS: An SMT-based synthesizer for
Functions in Linear Integer Arithmetic. Private Communication.

[13] Mukund Raghothaman & Abhishek Udupa (2014): Language to Specify Syntax-Guided Synthesis Problems.
CoRR abs/1405.5590.

[14] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli & Clark W. Barrett (2015):
Counterexample-Guided Quantifier Instantiation for Synthesis in SMT. In: Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
II, pp. 198–216.

[15] Heinz Riener & Rudiger Ehlers (2015): absTract sOlution Analyzing Synthesis Tool (System Description).
Private Communication.

[16] Shambwaditya Saha, Pranav Garg & P. Madhusudan (2015): Alchemist: Learning Guarded Affine Functions.
In: Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part I, pp. 440–446.

[17] Shambwaditya Saha, Daniel Neider & P. Madhusudan (2015): Alchemist CS DT: Synthesizing Guarded Affine
Functions using Constraint Solving and Decision-tree Learning. Private Communication.

[18] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodı́k & Kemal Ebcioglu (2005): Programming by
sketching for bit-streaming programs. In: Proceedings of the ACM SIGPLAN 2005 Conference on Program-
ming Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005, pp. 281–294.

[19] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat & Sanjit Seshia (2006): Combinato-
rial Sketching for Finite Programs. In: ASPLOS ’06, ACM Press, San Jose, CA, USA, pp. 404–415.

[20] Saurabh Srivastava, Sumit Gulwani & Jeffrey Foster (2010): From program verification to program synthesis.
POPL.

[21] Aaron Stump, Geoff Sutcliffe & Cesare Tinelli (2014): StarExec: A Cross-Community Infrastructure for
Logic Solving. In: Automated Reasoning - 7th International Joint Conference, IJCAR 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, pp. 367–373.

[22] Emina Torlak & Rastislav Bodı́k (2014): A lightweight symbolic virtual machine for solver-aided host lan-
guages. In: PLDI, p. 54.

	Introduction
	Conditional Linear Integer Arithmetic Track
	Invariant Synthesis Track
	SyGuS-Comp'14 summary
	SyGuS-Comp'15 summary

	Competition Settings
	Participating Benchmarks
	Participating Solvers
	Experimental Setup

	Competition Results and Analysis
	Results Overview
	Benchmarks' Features
	Detailed Results
	Observations

	Discussion

