
Syntax-Guided Synthesis

Rajeev Alur

Joint work with R.Bodik, G.Juniwal, M.Martin,
M.Raghothaman, S.Seshia, R.Singh,
A.Solar-Lezama, E.Torlak, A.Udupa

1

Program Verification

 Does a program P meet its specification j ?

 Historical roots: Hoare logic for formalizing correctness of
structured programs (late 1960s)

 Early examples: sorting, graph algorithms

 Provides calculus for pre/post conditions of structured programs

2

Sample Proof: Selection Sort

SelectionSort(int A[],n) {
i1 :=0;
while(i1 < n−1) {
v1 := i1;
i2 := i1 + 1;
while (i2 < n) {

if (A[i2]<A[v1])
v1 := i2 ;

i2++;
}
swap(A[i1], A[v1]);
i1++;

}
return A;

}

post: ∀k : 0 ≤ k <n ⇒ A[k] ≤ A[k + 1]

Invariant:
∀k1,k2. 0≤k1<k2<n ∧

k1<i1 ⇒ A[k1] ≤ A[k2]

Invariant:
i1<i2 ∧
i1≤v1<n ∧
(∀k1,k2. 0≤k1<k2<n ∧

k1<i1 ⇒ A[k1] ≤ A[k2]) ∧
(∀k. i1≤k<i2 ∧

k≥0 ⇒ A[v1] ≤ A[k])

3

Towards Practical Program Verification

1. Focus on simpler verification tasks:

Not full functional correctness, just absence of specific errors

Success story: Array accesses are within bounds

2. Provide automation as much as possible

Program verification is undecidable

Programmer asked to give annotations when absolutely needed

Consistency of annotations checked by SMT solvers

3. Use verification technology for synergestic tasks

Directed testing

Bug localization

4

Selection Sort: Array Access Correctness

SelectionSort(int A[],n) {
i1 :=0;
while(i1 < n−1) {

v1 := i1;
i2 := i1 + 1;
while (i2 < n) {

assert (0 ≤ i2 < n) & (0 ≤ v1 < n)
if (A[i2]<A[v1])

v1 := i2 ;
i2++;

}
assert (0 ≤ i1 <n) & (0 ≤ v1 < n)
swap(A[i1], A[v1]);
i1++;

}
return A;

} 5

Selection Sort: Proving Assertions

SelectionSort(int A[],n) {
i1 :=0;
while(i1 < n−1) {

v1 := i1;
i2 := i1 + 1;
while (i2 < n) {

assert 0≤ i2<n & 0≤ v1<n
if (A[i2]<A[v1])

v1 := i2 ;
i2++;

}
assert (0 ≤ i1 < n) & 0 ≤ v1<n
swap(A[i1], A[v1]);
i1++;

}
return A;

}
6

Check validity of formula

(i1 = 0) & (i1 < n-1) ⇒ (0 ≤ i1 <n)

And validity of formula

(0 ≤ i1 < n) & (i1’ = i1+1) & (i1’ < n-1)
⇒ (0 ≤ i1’ < n)

Discharging Verification Conditions

 Check validity of
(i1 = 0) & (i1 < n-1) ⇒ (0 ≤ i1 < n)

 Reduces to checking satisfiability of
(i1 = 0) & (i1 < n-1) & ~(0 ≤ i1 < n)

 Core computational problem: checking satisfiability

Classical satisfiability: SAT
Boolean variables + Logical connectives

SMT: Constraints over typed variables
i1 and n are of type Integer or BitVector[32]

7

A Brief History of SAT

2001

Chaff

10k var

1986

BDDs

 100 var

1992

GSAT

 300 var

1996

Stålmarck

 1000 var

1996

GRASP

1k var

1960

DP

10 var

1988

SOCRATES

 300 var

1994

Hannibal

 3k var

1962

DLL

 10 var

1952

Quine

 10 var

1996

SATO

1k var

2002

Berkmin

10k var

 Fundamental Thm of CS: SAT is NP-complete (Cook, 1971)
Canonical computationally intractable problem
Driver for theoretical understanding of complexity

 Enormous progress in scale of problems that can be solved
Inference: Discover new constraints dynamically
Exhaustive search with pruning
Algorithm engineering: Exploit architecture for speed-up

 SAT solvers as the canonical computational hammer!

2005

MiniSAT

20k var

8

SMT: Satisfiability Modulo Theories

 Computational problem: Find a satisfying assignment to a formula

Boolean + Int types, logical connectives, arithmetic operators
Bit-vectors + bit-manipulation operations in C
Boolean + Int types, logical/arithmetic ops + Uninterpreted functs

 “Modulo Theory”: Interpretation for symbols is fixed

Can use specialized algorithms (e.g. for arithmetic constraints)

 Progress in improved SMT solvers

9

Little Engines of Proof

SAT; Linear arithmetic; Congruence closure

SMT Success Story
SMT Solvers Verification Tools

10

SMT-LIB Standardized Interchange Format (smt-lib.org)
Problem classification + Benchmark repositories
LIA, LIA_UF, LRA, QF_LIA, …

+ Annual Competition (smt-competition.org)

Z3 Yices CVC4 MathSAT5

CBMC SAGE VCC Spec#

Program Synthesis

 Classical: Mapping a high-level (e.g. logical) specification to an
executable implementation

 Benefits of synthesis:

Make programming easier: Specify “what” and not “how”

Eliminate costly gap between programming and verification

 Deductive program synthesis: Constructive proof of Exists f. j

11

Verification Synthesis

12

Program Verification:
Does P meet spec j ?

SMT:
Is j satisfiable ?

SMT-LIB:
Standard API
Solver competition

Program Synthesis:
Find P that meets spec j

Syntax-Guided Synthesis

Plan for SYNTH-LIB

Superoptimizing Compiler

 Given a program P, find a “better” equivalent program P’

multiply (x[1,n], y[1,n]) {

x1 = x[1,n/2];

x2 = x[n/2+1, n];

y1 = y[1, n/2];

y2 = y[n/2+1, n];

a = x1 * y1;

b = shift(x1 * y2, n/2);

c = shift(x2 * y1, n/2);

d = shift(x2 * y2, n);

return (a + b + c + d)

}

Replace with equivalent code
with only 3 multiplications

13

Automatic Invariant Generation

SelectionSort(int A[],n) {
i1 :=0;
while(i1 < n−1) {
v1 := i1;
i2 := i1 + 1;
while (i2 < n) {

if (A[i2]<A[v1])
v1 := i2 ;

i2++;
}
swap(A[i1], A[v1]);
i1++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant: ?

Invariant: ?

14

Constraint solver

Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {
i1 :=0;
while(i1 < n−1) {
v1 := i1;
i2 := i1 + 1;
while (i2 < n) {

if (A[i2]<A[v1])
v1 := i2 ;

i2++;
}
swap(A[i1], A[v1]);
i1++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. ? ∧ ?

Invariant:
? ∧ ? ∧
(∀k1,k2. ? ∧ ?) ∧ (∀k. ? ∧ ?)

15

Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {
i1 :=0;
while(i1 < n−1) {
v1 := i1;
i2 := i1 + 1;
while (i2 < n) {

if (A[i2]<A[v1])
v1 := i2 ;

i2++;
}
swap(A[i1], A[v1]);
i1++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. 0≤k1<k2<n ∧

k1<i1 ⇒ A[k1]≤A[k2]

Invariant:
i1<i2 ∧
i1≤v1<n ∧
(∀k1,k2. 0≤k1<k2<n ∧

k1<i1 ⇒ A[k1]≤A[k2]) ∧
(∀k. i1≤k<i2 ∧

k≥0 ⇒ A[v1]≤A[k])

16

Parallel Parking by Sketching
Ref: Chaudhuri, Solar-Lezama (PLDI 2010)

Err = 0.0;
for(t = 0; t<T; t+=dT){

if(stage==STRAIGHT){
if(t > ??) stage= INTURN;

}
if(stage==INTURN){
car.ang = car.ang - ??;
if(t > ??) stage= OUTTURN;

}
if(stage==OUTTURN){
car.ang = car.ang + ??;
if(t > ??) break;

}
simulate_car(car);
Err += check_collision(car);

}
Err += check_destination(car);

Backup straight

Straighten

Turn

When to start turning?

How much to turn?

17

Autograder: Feedback on Programming Homeworks
Singh et al (PLDI 2013)

Student Solution P
+ Reference Solution R
+ Error Model

18

Find min no of edits to P so
as to make it equivalent to R

Input Output

(425)-706-7709 425-706-7709

510.220.5586 510-220-5586

1 425 235 7654 425-235-7654

425 745-8139 425-745-8139

FlashFill: Programming by Examples
Ref: Gulwani (POPL 2011)

Infers desired Excel macro program
Iterative: user gives examples and corrections
Being incorporated in next version of Microsoft Excel

19

Syntax-Guided Program Synthesis

 Core computational problem: Find a program P such that
1. P is in a set E of programs (syntactic constraint)
2. P satisfies spec j (semantic constraint)

 Common theme to many recent efforts
Sketch (Bodik, Solar-Lezama et al)
FlashFill (Gulwani et al)
Super-optimization (Schkufza et al)
Invariant generation (Many recent efforts…)
TRANSIT for protocol synthesis (Udupa et al)
Oracle-guided program synthesis (Jha et al)
Implicit programming: Scala^Z3 (Kuncak et al)
Auto-grader (Singh et al)

But no way to share benchmarks and/or compare solutions 20

Syntax-Guided Synthesis (SyGuS) Problem

 Fix a background theory T: fixes types and operations

 Function to be synthesized: name f along with its type

General case: multiple functions to be synthesized

 Inputs to SyGuS problem:

Specification j

Typed formula using symbols in T + symbol f

Set E of expressions given by a context-free grammar

Set of candidate expressions that use symbols in T

 Computational problem:

Output e in E such that j[f/e] is valid (in theory T)

21

SyGuS Example

 Theory QF-LIA

Types: Integers and Booleans

Logical connectives, Conditionals, and Linear arithmetic

Quantifier-free formulas

 Function to be synthesized f (int x, int y) : int

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Candidate Implementations: Linear expressions

LinExp := x | y | Const | LinExp + LinExp | LinExp - LinExp

 No solution exists

22

SyGuS Example

 Theory QF-LIA

 Function to be synthesized: f (int x, int y) : int

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Candidate Implementations: Conditional expressions without +

Term := x | y | Const | If-Then-Else (Cond, Term, Term)

Cond := Term <= Term | Cond & Cond | ~ Cond | (Cond)

 Possible solution:

If-Then-Else (x ≤ y, y, x)

23

Let Expressions and Auxiliary Variables

 Synthesized expression maps directly to a straight-line program

 Grammar derivations correspond to expression parse-trees

 How to capture common subexpressions (which map to aux vars) ?

 Solution: Allow “let” expressions

 Candidate-expressions for a function f(int x, int y) : int

T := (let [z = U] in z + z)

U := x | y | Const | (U) | U + U | U*U

24

Optimality

 Specification for f(int x) : int

x ≤ f(x) & -x ≤ f(x)

 Set E of implementations: Conditional linear expressions

 Multiple solutions are possible

If-Then-Else (0 ≤ x , x, 0)

If-Then-Else (0 ≤ x , x, -x)

 Which solution should we prefer?

Need a way to rank solutions (e.g. size of parse tree)

25

Invariant Generation as SyGuS

26

bool x, y, z
int a, b, c

while(Test) {
loop-body
….

}

 Goal: Find inductive loop invariant automatically

 Function to be synthesized

Inv (bool x, bool z, int a, int b) : bool

 Compile loop-body into a logical predicate

Body(x,y,z,a,b,c, x’,y’,z’,a’,b’,c’)

 Specification:

Inv & Body & Test’ ⇒ Inv’

 Template for set of candidate invariants

Term := a | b | Const | Term + Term | If-Then-Else (Cond, Term, Term)

Cond := x | z | Cond & Cond | ~ Cond | (Cond)

Program Optimization as SyGuS

 Type matrix: 2x2 Matrix with Bit-vector[32] entries

Theory: Bit-vectors with arithmetic

 Function to be synthesized f(matrix A, B) : matrix

 Specification: f(A,B) is matrix product

f(A,B)[1,1] = A[1,1]*B[1,1] + A[1,2]*B[2,1]

…

 Set of candidate implementations

Expressions with at most 7 occurrences of *

Unrestricted use of +

let expressions allowed

27

Program Sketching as SyGuS

 Sketch programming system

C program P with ?? (holes)

Find expressions for holes so as to satisfy assertions

 Each hole corresponds to a separate function symbol

 Specification: P with holes filled in satisfies assertions

Loops/recursive calls in P need to be unrolled fixed no of times

 Set of candidate implementations for each hole:

All type-consistent expressions

 Not yet explored:

How to exploit flexibility of separation betn syntactic and

semantic constraints for computational benefits?
28

Solving SyGuS

 Is SyGuS same as solving SMT formulas with quantifier alternation?

 SyGuS can sometimes be reduced to Quantified-SMT, but not always

Set E is all linear expressions over input vars x, y

SyGuS reduces to Exists a,b,c. Forall X. j [f/ ax+by+c]

Set E is all conditional expressions

SyGuS cannot be reduced to deciding a formula in LIA

 Syntactic structure of the set E of candidate implementations can be
used effectively by a solver

 Existing work on solving Quantified-SMT formulas suggests solution
strategies for SyGuS

29

SyGuS as Active Learning

30

Learning
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate

Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values

Counter-Example Guided Inductive Synthesis

 Concrete inputs I for learning f(x,y) = { (x=a,y=b), (x=a’,y=b’), ….}

 Learning algorithm proposes candidate expression e such that j[f/e]
holds for all values in I

 Check if j [f/e] is valid for all values using SMT solver

 If valid, then stop and return e

 If not, let (x=a, y=b, ….) be a counter-example (satisfies ~ j[f/e])

 Add (x=a, y=b) to tests I for next iteration

31

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

32

Learning
Algorithm

Verification
Oracle

Examples = { }

Candidate

f(x,y) = x

Example

(x=0, y=1)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

33

Learning
Algorithm

Verification
Oracle

Examples =

{(x=0, y=1) } Candidate

f(x,y) = y

Example

(x=1, y=0)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

34

Learning
Algorithm

Verification
Oracle

Examples =

{(x=0, y=1)

(x=1, y=0)

(x=0, y=0)

(x=1, y=1)}
Candidate

ITE (x ≤ y, y,x)

Success

SyGuS Solutions

 CEGIS approach (Solar-Lezama, Seshia et al)

 Similar strategies for solving quantified formulas and invariant
generation

 Learning strategies based on:

Enumerative (search with pruning): Udupa et al (PLDI’13)

Symbolic (solving constraints): Gulwani et al (PLDI’11)

Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13)

35

Enumerative Learning

 Find an expression consistent with a given set of concrete examples

 Enumerate expressions in increasing size, and evaluate each expression
on all concrete inputs to check consistency

 Key optimization for efficient pruning of search space:

Expressions e1 and e2 are equivalent

if e1(a,b)=e2(a,b) on all concrete values (x=a,y=b) in Examples

Only one representative among equivalent subexpressions needs

to be considered for building larger expressions

 Fast and robust for learning expressions with ~ 15 nodes

36

Symbolic Learning

 Suppose we know upper bound on no. of occurrences of each symbol

37

x
n1

x
n2

y
n3

y
n4

0
n5

1
n6

+
n7

+
n8

>=
n9

ITE
n10

 Variables encode edges in desired expression tree

E.g. l9, r9 : {n1, … n10} give left and right children of node n9

 Constraints:

Types are consistent, Shape is a DAG

Spec j[f/e] is satisfied on every concrete input values in I

 Use an SMT solver to find a satisfying solution

 If unsatisfied, then bounds need to be increased in outer loop

Stochastic Learning

 Idea: Find desired expression e by probabilistic walk on graph where
nodes are expressions and edges capture single-edits

 For a given set I of concrete inputs, Score(e) = exp(- 0.5 Wrong(e)),
where Wrong(e) = No of examples in I for which ~ j [f/e]

 Fix n and consider En to be set of all expressions in E of size n

 Initialize: Choose e by uniform sampling of En

 If Score(e)=1 then return e, else:

Choose a node v in parse-tree of e at random

Replace subtree at v by a random subtree of same size to get e’

Update e to e’ with probability min{ 1, Score(e’)/Score(e) }

 Outer loop responsible for updating expression size n
38

Benchmarks and Implementation

 Prototype implementation of Enumerative/Symbolic/Stochastic CEGIS

 Benchmarks:

Bit-manipulation programs from Hacker’s delight

Integer arithmetic: Find max, search in sorted array

Challenge problems such as computing Morton’s number

 Multiple variants of each benchmark by varying grammar

 Results are not conclusive as implementations are unoptimized, but
offers first opportunity to compare solution strategies

39

Evaluation

 Enumerative CEGIS has best performance, and solves many benchmarks
within seconds

Potential problem: Synthesis of complex constants

 Symbolic CEGIS is unable to find answers on most benchmarks

Caveat: Sketch succeeds on many of these

 Choice of grammar has impact on synthesis time

When E is set of all possible expressions, solvers struggle

 None of the solvers succeed on some benchmarks

Morton constants, Search in integer arrays of size > 4

 Bottomline: Improving solvers is a great opportunity for research !

40

SyGuS Recap

 Contribution: Formalization of syntax-guided synthesis problem

Not language specific such as Sketch, Scala^Z3,…

Not as low-level as (quantified) SMT

 Advantages compared to classical synthesis

1. Set E can be used to restrict search (computational benefits)

2. Programmer flexibility: Mix of specification styles

3. Set E can restrict implementation for resource optimization

4. Beyond deductive solution strategies: Search, inductive inference

 Prototype implementation of 3 solution strategies

 Initial set of benchmarks and evaluation

41

From SMT-LIB to SYNTH-LIB

(set-logic LIA)

(synth-fun max2 ((x Int) (y Int)) Int

((Start Int (x y 0 1

(+ Start Start)

(- Start Start)

(ite StartBool Start Start)))

(StartBool Bool ((and StartBool StartBool)

(or StartBool StartBool)

(not StartBool)

(<= Start Start))))

(declare-var x Int)

(declare-var y Int)

(constraint (>= (max2 x y) x))

(constraint (>= (max2 x y) y))

(constraint (or (= x (max2 x y)) (= y (max2 x y))))

(check-synth)

42

Plan for Synth-Comp

 Proposed competition of SyGuS solvers at FLoC, July 2014

 Organizers: Alur, Fisman (Penn) and Singh, Solar-Lezama (MIT)

 Website: excape.cis.upenn.edu/Synth-Comp.html

 Mailing list: synthlib@cis.upenn.edu

 Call for participation:

Join discussion to finalize synth-lib format and competition format

Contribute benchmarks

Build a SyGuS solver

43

mailto:synthlib@cis.upenn.edu

SyGuS Solvers Synthesis Tools

44

SYNTH-LIB Standardized Interchange Format
Problem classification + Benchmark repository

+ Solvers competition

Program
optimization

Program
sketching

Programming
by examples

Invariant
generation

Potential Techniques for Solvers:
Learning, Constraint solvers, Enumerative/stochastic search

Little engines of synthesis ?

