Syntax-6uided Synthesis

Rajeev Alur

Joint work with R.Bodik, 6.Juniwal, M.Martin,
M.Raghothaman, S.Seshia, R.Singh,
A.Solar-Lezama, E.Torlak, A.Udupa

- "' R4
1008\ ry " Penn
18 EXCAPE ” Engincering

s;”

Program Verification

[Does a program P meet its specification ¢ ?

[Historical roots: Hoare logic for formalizing correctness of
structured programs (late 1960s)

O Early examples: sorting, graph algorithms

[Provides calculus for pre/post conditions of structured programs

Sample Proof:

Selection Sort

SelectionSort(int A[],n) {
i1:=0;
while(il < n-1) {

Invariant:
vkl k2. O<kl<k2<n A

vl =il
i2 :=il+1;

}
swap(A[il], A[v1]);

i1++:

}

return A;

}

ki<l = A[k1]< A[K2]
.

while (i2 < n) {
if (A[i2]<A[vl&\[Invariant:
vl = i2: i1<i2 A
i2++ ilcvlcn A

(vkl,k2. O<kl<k2<n A

kl<il = A[kl] < A[k2]) A
(Vk. ilck<i2 A

k20 = A[vl] < A[K])

post: Vk:0<k<n= A[k]< Alk +1]

Towards Practical Program Verification

Focus on simpler verification tasks:
¢ Not full functional correctness, just absence of specific errors
¢ Success story: Array accesses are within bounds

Provide automation as much as possible

¢ Program verification is undecidable

¢ Programmer asked to give annotations when absolutely needed
¢ Consistency of annotations checked by SMT solvers

Use verification technology for synergestic tasks
¢ Directed testing
¢ Bug localization

Selection Sort: Array Access Correctness

SelectionSort(int A[],n) {
il1:=0;
while(il < n-1) {
vl =il
i2:=il+1;
while (i2 < n) {
assert (0<i2<n)& (0<vl<n)
if (A[i2]kA[v1])
vl = i2:
12++;
}
assert (O<il<n) & (O <vl<n)
swap(A[il], A[v1]):
i1++:
}

return A;

}

Selection Sort: Proving Assertions

SelectionSort(int A[],n) {
i1:=0;
\while(il <n-1){

<€

‘Lasser‘r (0<il<n)

l i1++:

}

Check validity of formula

(i1=0)&(i1<n-1)= (0<il<n)

And validity of formula

(0<il<n)&(il' = i1+1) & (i1' < n-1)
= (0¢il' <n)

Discharging Verification Conditions
O Check validity of
(i1=0)&(i1<n-1)=(0<il<n)

O Reduces to checking satisfiability of
(i1=0)&(i1<n-1)&~(0<il<n)

O Core computational problem: checking satisfiability

¢ Classical satisfiability: SAT
Boolean variables + Logical connectives

¢ SMT: Constraints over typed variables
i1 and n are of type Integer or BitVector[32]

A Brief History of SAT

Q Fundamental Thm of CS: SAT is NP-complete (Cook, 1971)
¢ Canonical computationally intractable problem
¢+ Driver for theoretical understanding of complexity

O Enormous progress in scale of problems that can be solved
¢ Inference: Discover new constraints dynamically
¢+ Exhaustive search with pruning
¢ Algorithm engineering: Exploit architecture for speed-up

O SAT solvers as the canonical computational hammer!

1960 1994 1996 2002
op 1988 _ _
~10 var SOCRATES Hannibal GRASP Berkmin
= ~ 300 var ~ 3k var ~1k var ~10k var
]]]]]]]
1986 1992 1996 2001 2005
lei‘r’nze ool BDDs GSAT Stamarck Chaff MiniSAT
~ 100 var ~ 300 var = ~10k var ~20k var

~ 10 var ~ 10 var
1996

SATO
~1k var

SMT: Satisfiability Modulo Theories

[Computational problem: Find a satisfying assignment to a formula

¢ Boolean + Int types, logical connectives, arithmetic operators

¢ Bit-vectors + bit-manipulation operations in C

¢ Boolean + Int types, logical/arithmetic ops + Uninterpreted functs
0 “"Modulo Theory": Interpretation for symbols is fixed

¢ Can use specialized algorithms (e.g. for arithmetic constraints)

[Progress in improved SMT solvers

Little Engines of Proof

SAT; Linear arithmetic; Congruence closure

SMT Success Story
SMT Solvers «e== \erification Tools

TTIT

SMT-LIB Standardized Interchange Format (smt-lib.org)
Problem classification + Benchmark repositories
LTIA,LIA_UF,LRA, QF_LIA, ..

+ Annual Competition (smt-competition.org)

@ es

Program Synthesis

Q Classical: Mapping a high-level (e.g. logical) specification to an
executable implementation

[Benefits of synthesis:
¢ Make programming easier: Specify "what" and not "how"
¢ Eliminate costly gap between programming and verification

O Deductive program synthesis: Constructive proof of Exists f. ¢

11

Verification

Program Verification:
Does P meet spec ¢ ?

SMT:

Is ¢ satisfiable ?

l

SMT-LIB:
Standard API
Solver competition

e=) Synthesis

Program Synthesis:
Find P that meets spec ¢

\ 4

Syntax-Guided Synthesis

Plan for SYNTH-LIB

12

Superoptimizing Compiler

d Given a program P, find a "better” equivalent program P’

multiply (x[1,n], y[1l,n]) {

x1
x2

x[1,n/2];
x[n/2+1, n];

yl = y[1, n/2];

y2 = y[n/2+1, n];

a =x1 * yl;

b = shift(x1 * y2, n/2);
c = shift(x2 * yl1, n/2);
d = shift(x2 * y2, n);
return ((a + b + ¢ + d)

Replace with equivalent code
— with only 3 multiplications

13

Automatic Invariant Generation

Siell?:cg;onSor’r(m’r A[1,n){ J Invariant: 2

while(il < n-1){ _———"T1

vl = il;

i2:=il+1;

while (i2 < n){\
lfng:‘£li22]<;A[V1]) E‘ Invariant: ?
12++;

}

swap(A[il], A[v1]);

i1++:

}

return A;

}

post: Vk: 0 <kn = A[kKA[k + 1]

Template-based Automatic Invariant Generation

Siellg_cg{onSor"r(m’r A[1,n) { Invariant:
s vkl k2.2 A?
while(il < n-1) { ’
vl = il; []
i2:=il+ 1, | Tnvariant:
while (i2 < n){< A A
if gA[l?2]<A[v1]) (vk1,k2.2 A?) A (VK. ? A ?)
vl = 1<,
12++;
}
swap(A[il], A[v1]);
i1++:
} Constraint solver }
return A;
}
post: Vk: 0 <kn = A[kKA[k + 1]

Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {

Invariant:

i1:=0;
s vkl k2. O<kl<k2<n A
W:‘I"i('ill.‘ DA Kl<il > A[KIKA[K2]
i2:=il+ 1 |
while (i2 < n) { .
if ?[iZQM[vl&J ;ln\./gr;l\an’r:
vl = i2; 11<i
12++; ~_ ilevi<n A
) (vkl,k2. O<kl<k2<n A
slwap(A[il], A[v1]): (vll(<1<'i11 :> 2A[/\kl]sA[kZ]) A
i1++; . 11ckei
} k>0 = A[v1kA[K])
return A;
}

post: Vk: 0 <kn = A[kKA[k + 1]

16

Parallel Parking by Sketching

Ref: Chaudhuri, Solar-Lezama (PLDI 2010)

Err=0.0;
for(t = O; #<T; ++=dT)
if(stage==STRAIGHT

Tagez INTURN: } Backup straight

When to start turning?

}

if(stage==INTURN) — How much to turn?
car.ang = car.ang
if(t > ??) stage= OUTTURN; Turn

}

if(stage==OUTTURN) a)) ALy =)
car.ang = car.ang + ??; } Straighten
if(t > ??) break;

}

simulate_car(car);

I
Err += check_collision(car);
| E =

Err += check_destination(car);

17

Autograder: Feedback on Programming Homeworks

Singh et al (PLDI 2013)

1 def computeDeriv(poly):
2 deriv = []

- zero = 0

4 if (len(poly)==1):
5 return deriv

for e in range (0, len(poly)):

1f (polyl[e]l==0):
zero += 1
else:

_2 deriv.append (polyle] *e)

12 return deriv

Find min no of edits to P so
as to make it equivalent to R

Student Solution P
+ Reference Solution R
+ Error Model

@

The program requires 3 changes:

® [n the return statement return deriv in line 5,
replace deriv by [0].

® [n the comparison expression (poly[e] == 0) in
line 7, change (poly[e] == 0) to False.

® [n the expression range(0, len(poly)) in line 6,

replace 0 by 1.
18

FlashFill: Programming by Examples

Input
(425)-706-7709
510.220.5586
1425 235 7654
425 745-8139

Ref: Gulwani (POPL 2011)

Output

425-706-7709
510-220-5586
425-235-7654
425-745-8139

¢ TInfers desired Excel macro program
¢ Ttferative: user gives examples and corrections
¢ Being incorporated in next version of Microsoft Excel

19

Syntax-Guided Program Synthesis

[Core computational problem: Find a program P such that
1.Pisin aset E of programs (syntactic constraint)
2. P satisfies spec ¢ (semantic constraint)

d Common theme to many recent efforts

¢ Sketch (Bodik, Solar-Lezama et al)
FlashFill (Gulwani et al)
Super-optimization (Schkufza et al)
Invariant generation (Many recent efforts...)
TRANSIT for protocol synthesis (Udupa et al)
Oracle-guided program synthesis (Jha et al)
Implicit programming: Scala”Z3 (Kuncak et al)
Auto-grader (Singh et al)

* ¢ & & ¢ % @

But no way to share benchmarks and/or compare solutions 20

Syntax-Guided Synthesis (SyGuS) Problem

O Fix a background theory T: fixes types and operations

O Function to be synthesized: name f along with its type
¢ (General case: multiple functions to be synthesized

Qd Inputs to SyGuS problem:
¢ Specification ¢
Typed formula using symbols in T + symbol f
¢ Set E of expressions given by a context-free grammar
Set of candidate expressions that use symbols in T

 Computational problem:
Output e in E such that ¢[f/e] is valid (in theory T)

21

SyGuS Example
d Theory QF-LIA
Types: Integers and Booleans

Logical connectives, Conditionals, and Linear arithmetic
Quantifier-free formulas

d Function to be synthesized f (int x, inty) : int
Q Specification: (x < f(x,y)) & (y < f(x.y)) & (f(x.y) =x | f(x.,y)=y)

[Candidate Implementations: Linear expressions
LinExp := x | y | Const | LinExp + LinExp | LinExp - LinExp

O No solution exists

22

SyGuS Example

d Theory QF-LIA

O Function to be synthesized: f (int x, int y) : int
Q Specification: (x < f(x,y)) & (y < f(x,y)) & (f(x,y) =x | f(x.,y)=y)
0 Candidate Implementations: Conditional expressions without +

Term := x | y | Const | If-Then-Else (Cond, Term, Term)
Cond := Term <= Term | Cond & Cond | ~ Cond | (Cond)

A Possible solution:
If-Then-Else (x <y, vy, x)

23

Let Expressions and Auxiliary Variables

0 Synthesized expression maps directly to a straight-line program

Q Grammar derivations correspond to expression parse-trees

O How to capture common subexpressions (which map to aux vars) ?
A Solution: Allow "let” expressions

[Candidate-expressions for a function f(int x, int y) : int

T:i=(let[z=U]lin z+2)
U:i=x]|y]|Const|(U)|U+U]|U*U

24

Optimality

d Specification for f(int x) : int
x<f(x) & -x<f(x)

O Set E of implementations: Conditional linear expressions

O Multiple solutions are possible
If-Then-Else (0 < x , x, 0)
If-Then-Else (0 < x , x, -x)

d Which solution should we prefer?
Need a way to rank solutions (e.g. size of parse tree)

25

Invariant Generation as SyGuS

[Goal: Find inductive loop invariant automatically

bool x, vy, z
int a,b,c Q Function to be synthesized

Inv (bool x, bool z, int q, int b) : bool
while(Test) {
loop-body . . . _
0 Compile loop-body into a logical predicate

Body(x,y,z,ab,c, x'y' z,d,b'c

d Specification:
Inv & Body & Test' = Inv'

O Template for set of candidate invariants

Term:=a | b | Const | Term + Term | If-Then-Else (Cond, Term, Term)

Cond :=x | z| Cond & Cond | ~ Cond | (Cond)
26

Program Optimization as SyGuS

O Type matrix: 2x2 Matrix with Bit-vector[32] entries
Theory: Bit-vectors with arithmetic

O Function to be synthesized f(matrix A, B) : matrix

O Specification: f(A,B) is matrix product
f(AB)[1,1]1= A[11T*B[1,1]+ A[1,2]*B[2,1]

[Set of candidate implementations
Expressions with at most 7 occurrences of *
Unrestricted use of +
let expressions allowed

27

Program Sketching as SyGuS

0 Sketch programming system
C program P with ?? (holes)
Find expressions for holes so as to satisfy assertions

[Each hole corresponds to a separate function symbol

O Specification: P with holes filled in satisfies assertions
Loops/recursive calls in P need to be unrolled fixed no of times

0 Seft of candidate implementations for each hole:
All type-consistent expressions

O Not yet explored:
How to exploit flexibility of separation betn syntactic and

semantic constraints for computational benefits?
28

Solving SyGuS
0 Is SyGuS same as solving SMT formulas with quantifier alternation?

O SyGuS can sometimes be reduced to Quantified-SMT, but not always
¢ Set E is all linear expressions over input vars x, y
SyGuS reduces to Exists a,b,c. Forall X. ¢ [f/ ax+by+c]
¢ Set E is all conditional expressions
SyGuS cannot be reduced to deciding a formula in LTA

[Syntactic structure of the set E of candidate implementations can be
used effectively by a solver

d Existing work on solving Quantified-SMT formulas suggests solution
strategies for SyGuS

29

Initial examples T

SyGuS as Active Learning

l

-

_

Learning
Algorithm

~

Candidate
Expression

>

<€

-

N

/Coun‘rer'examplek

Concept class: Set E of expressions

Examples: Concrete input values

Verification
Oracle

~

)

l Success

30

Counter-Example Guided Inductive Synthesis

d Concrete inputs I for learning f(x,y) = { (x=a,y=b), (x=a'y=b’),}

d Learning alﬁor‘i‘rhm proIposes candidate expression e such that ¢[f/e]
holds for all values in

O Check if ¢ [f/e] is valid for all values using SMT solver
d If valid, then stop and returne
d If not, let (x=a, y=B,) be a counter-example (satisfies ~ ¢o[f/e])

Q Add (x=a, y=B) to tests I for next iteration

31

CEGIS Example
Q Specification: (x < f(x,y)) & (y < f(x,y)) & (f(x.y) =x | f(x.y)=y)

O Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

Examples = { } l

Candidate
f(x,y) = x
4) () 4)
Learning > Verification
Algorithm | Oracle
- " Example - /

(x=0, y=1)

CEGIS Example
Q Specification: (x < f(x,y)) & (y < f(x,y)) & (f(x.y) =x | f(x.y)=y)

O Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

Examples =
{(x=0,y=1)} l Candidate
4 ™ fhey)=y - R
Learning > Verification
Algorithm | Oracle
- " Example - /

(x=1, y=0)

CEGIS Example

Q Specification: (x < f(x,y)) & (y < f(x,y)) & (f(x.y) =x | f(x.y)=y)

O Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

Examples =

{(x=0, y=1)
(x=1, y=0)

(x=0, y=0)
(x=1, y=1)}

-

-

Learning
Algorithm

Candidate

ITE (x <Yy, y,x)
N v 4

>

)

-

~

Verification
Oracle

)

l Success

34

Sy6uS Solutions
O CEGIS approach (Solar-Lezama, Seshia et al)

0 Similar strategies for solving quantified formulas and invariant
generation

0 Learning strategies based on:
¢ Enumerative (search with pruning): Udupa et al (PLDI'13)
¢ Symbolic (solving constraints): Gulwani et al (PLDI'11)
¢ Stochastic (probabilistic walk): Schkufza et al (ASPLOS'13)

35

Enumerative Learning
1 Find an expression consistent with a given set of concrete examples

O Enumerate expressions in increasing size, and evaluate each expression
on all concrete inputs to check consistency

O Key optimization for efficient pruning of search space:
Expressions e; and e, are equivalent
if e;(a,b)=e,(a,b) on all concrete values (x=a,y=b) in Examples
Only one representative among equivalent subexpressions needs
to be considered for building larger expressions

O Fast and robust for learning expressions with ~ 15 nodes

36

Symbolic Learning

[Suppose we know upper bound on no. of occurrences of each symbol

n10

EFONOROMORONONORORONGS

[Variables encode edges in desired expression tree
E.g.19,r9:{nl, .. n10} give left and right children of node n9

d Constraints:
Types are consistent, Shape is a DAG
Spec ¢[f/e] is satisfied on every concrete input values in I

[Use an SMT solver to find a satisfying solution

O If unsatisfied, then bounds need to be increased in outer loop
37

Stochastic Learning

Idea: Find desired expression e by probabilistic walk on graph where
nodes are expressions and edges capture single-edits

For a given set I of concrete inputs, Score(e) = exp(- 0.5 Wrong(e)),
where Wrong(e) = No of examples in I for which ~ ¢ [f/e]

Fix n and consider E, to be set of all expressions in E of size n
Initialize: Choose e by uniform sampling of E,

If Score(e)=1 then return e, else:
Choose a node v in parse-tree of e at random
Replace subtree at v by a random subtree of same size to get e’
Update e to e’ with probability min{ 1, Score(e')/Score(e) }

Outer loop responsible for updating expression size n »

Benchmarks and Implementation
0 Prototype implementation of Enumerative/Symbolic/Stochastic CEGIS
d Benchmarks:
¢ Bit-manipulation programs from Hacker's delight

¢ Integer arithmetic: Find max, search in sorted array
¢ Challenge problems such as computing Morton's number

O Multiple variants of each benchmark by varying grammar

Q Results are not conclusive as implementations are unoptimized, but
offers first opportunity to compare solution strategies

39

Evaluation

[Enumerative CEGILS has best performance, and solves many benchmarks

within seconds
Potential problem: Synthesis of complex constants

d Symbolic CEGIS is unable to find answers on most benchmarks
Caveat: Sketch succeeds on many of these

0 Choice of grammar has impact on synthesis time
When E is set of all possible expressions, solvers struggle

 None of the solvers succeed on some benchmarks
Morton constants, Search in integer arrays of size > 4

O Bottomline: Improving solvers is a great opportunity for research !

40

SyGuS Recap

[Contribution: Formalization of syntax-guided synthesis problem
+ Not language specific such as Sketch, Scala”Z3,...
*+ Not as low-level as (quantified) SMT

O Advantages compared to classical synthesis
1. Set E can be used to restrict search (computational benefits)
2. Programmer flexibility: Mix of specification styles
3. Set E can restrict implementation for resource optimization
4. Beyond deductive solution strategies: Search, inductive inference

[Prototype implementation of 3 solution strategies

Q Initial set of benchmarks and evaluation

41

From SMT-LIB to SYNTH-LIB

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int
((Start Int (xyO1
(+ Start Start)
(- Start Start)
(ite StartBool Start Start)))
(StartBool Bool ((and StartBool StartBool)
(or StartBool StartBool)
(not StartBool)
(<= Start Start))))
(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 x y) x))
(constraint (>= (max2 x y) y))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)

42

Plan for Synth-Comp
[Proposed competition of SyGuS solvers at FLoC, July 2014

d Organizers: Alur, Fisman (Penn) and Singh, Solar-Lezama (MIT)

0 Website: excape.cis.upenn.edu/Synth-Comp.html

Q Mailing list: synthlib@cis.upenn.edu

Q Call for participation:
¢ Join discussion to finalize synth-lib format and competition format
¢ Contribute benchmarks
¢ Build a SyGuS solver

43

mailto:synthlib@cis.upenn.edu

SyGuS Solvers «== Synthesis Tools

Program Invariant
sketching generation

Programming

Program
by examples

optimization

SYNTH-LIB Standardized Interchange Format
Problem classification + Benchmark repository

+ Solvers competition

l

(Potential Techniques for Solvers: N
Learning, Constraint solvers, Enumerative/stochastic search

\ Little engines of synthesis ?)

44

